Suppr超能文献

古菌基础转录和激活转录中的TBP结构域对称性

TBP domain symmetry in basal and activated archaeal transcription.

作者信息

Ouhammouch Mohamed, Hausner Winfried, Geiduschek E Peter

机构信息

Division of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0634, USA.

出版信息

Mol Microbiol. 2009 Jan;71(1):123-31. doi: 10.1111/j.1365-2958.2008.06512.x. Epub 2008 Nov 4.

Abstract

The TATA box binding protein (TBP) is the platform for assembly of archaeal and eukaryotic transcription preinitiation complexes. Ancestral gene duplication and fusion events have produced the saddle-shaped TBP molecule, with its two direct-repeat subdomains and pseudo-two-fold symmetry. Collectively, eukaryotic TBPs have diverged from their present-day archaeal counterparts, which remain highly symmetrical. The similarity of the N- and C-halves of archaeal TBPs is especially pronounced in the Methanococcales and Thermoplasmatales, including complete conservation of their N- and C-terminal stirrups; along with helix H'1, the C-terminal stirrup of TBP forms the main interface with TFB/TFIIB. Here, we show that, in stark contrast to its eukaryotic counterparts, multiple substitutions in the C-terminal stirrup of Methanocaldococcus jannaschii (Mja) TBP do not completely abrogate basal transcription. Using DNA affinity cleavage, we show that, by assembling TFB through its conserved N-terminal stirrup, Mja TBP is in effect ambidextrous with regard to basal transcription. In contrast, substitutions in either its N- or the C-terminal stirrup abrogate activated transcription in response to the Lrp-family transcriptional activator Ptr2.

摘要

TATA框结合蛋白(TBP)是古细菌和真核生物转录起始前复合物组装的平台。祖先基因的复制和融合事件产生了鞍形的TBP分子,它有两个直接重复亚结构域和假二重对称。总的来说,真核生物的TBP已经与其当今高度对称的古细菌对应物有所不同。古细菌TBP的N端和C端的相似性在甲烷球菌目和热原体目中尤为明显,包括它们的N端和C端马镫结构的完全保守;与螺旋H'1一起,TBP的C端马镫结构形成了与TFB/TFIIB的主要界面。在这里,我们表明,与真核生物对应物形成鲜明对比的是,詹氏甲烷球菌(Mja)TBP的C端马镫结构中的多个取代并不完全消除基础转录。通过DNA亲和切割,我们表明,通过其保守的N端马镫结构组装TFB,Mja TBP在基础转录方面实际上是双手通用的。相比之下,其N端或C端马镫结构中的取代会消除对Lrp家族转录激活因子Ptr2的激活转录反应。

相似文献

1
TBP domain symmetry in basal and activated archaeal transcription.
Mol Microbiol. 2009 Jan;71(1):123-31. doi: 10.1111/j.1365-2958.2008.06512.x. Epub 2008 Nov 4.
2
Promoter architecture and response to a positive regulator of archaeal transcription.
Mol Microbiol. 2005 May;56(3):625-37. doi: 10.1111/j.1365-2958.2005.04563.x.
3
Hybrid Ptr2-like activators of archaeal transcription.
Mol Microbiol. 2009 Nov;74(3):582-93. doi: 10.1111/j.1365-2958.2009.06884.x. Epub 2009 Sep 22.
5
Crystal structure of Methanococcus jannaschii TATA box-binding protein.
Genes Cells. 2008 Nov;13(11):1127-40. doi: 10.1111/j.1365-2443.2008.01233.x.
6
Eukaryotic and archaeal TBP and TFB/TF(II)B follow different promoter DNA bending pathways.
Nucleic Acids Res. 2014 Jun;42(10):6219-31. doi: 10.1093/nar/gku273. Epub 2014 Apr 17.
7
An expanding family of archaeal transcriptional activators.
Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15423-8. doi: 10.1073/pnas.0508043102. Epub 2005 Oct 17.
8
Direct modulation of RNA polymerase core functions by basal transcription factors.
Mol Cell Biol. 2005 Sep;25(18):8344-55. doi: 10.1128/MCB.25.18.8344-8355.2005.
9
Archaeal chromatin and transcription.
Mol Microbiol. 2003 May;48(3):587-98. doi: 10.1046/j.1365-2958.2003.03439.x.

引用本文的文献

1
Archaeal histone-based chromatin structures regulate transcription elongation rates.
Commun Biol. 2024 Feb 27;7(1):236. doi: 10.1038/s42003-024-05928-w.
2
Archaeal transcription.
Transcription. 2020 Oct;11(5):199-210. doi: 10.1080/21541264.2020.1838865. Epub 2020 Oct 28.
3
Displacement of the transcription factor B reader domain during transcription initiation.
Nucleic Acids Res. 2018 Nov 2;46(19):10066-10081. doi: 10.1093/nar/gky699.
5
The Lrp family of transcription regulators in archaea.
Archaea. 2010 Nov 30;2010:750457. doi: 10.1155/2010/750457.
6
Transcriptional activation in the context of repression mediated by archaeal histones.
Proc Natl Acad Sci U S A. 2010 Apr 13;107(15):6777-81. doi: 10.1073/pnas.1002360107. Epub 2010 Mar 29.

本文引用的文献

1
A korarchaeal genome reveals insights into the evolution of the Archaea.
Proc Natl Acad Sci U S A. 2008 Jun 10;105(23):8102-7. doi: 10.1073/pnas.0801980105. Epub 2008 Jun 5.
2
An expanding family of archaeal transcriptional activators.
Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15423-8. doi: 10.1073/pnas.0508043102. Epub 2005 Oct 17.
3
Archaeal transcription and its regulators.
Mol Microbiol. 2005 Jun;56(6):1397-407. doi: 10.1111/j.1365-2958.2005.04627.x.
4
Promoter architecture and response to a positive regulator of archaeal transcription.
Mol Microbiol. 2005 May;56(3):625-37. doi: 10.1111/j.1365-2958.2005.04563.x.
5
A fully recombinant system for activator-dependent archaeal transcription.
J Biol Chem. 2004 Dec 10;279(50):51719-21. doi: 10.1074/jbc.C400446200. Epub 2004 Oct 14.
6
Activation of archaeal transcription by recruitment of the TATA-binding protein.
Proc Natl Acad Sci U S A. 2003 Apr 29;100(9):5097-102. doi: 10.1073/pnas.0837150100. Epub 2003 Apr 11.
7
Mechanism and regulation of transcription in archaea.
Curr Opin Microbiol. 2001 Apr;4(2):208-13. doi: 10.1016/s1369-5274(00)00190-9.
9
Structural basis of preinitiation complex assembly on human pol II promoters.
EMBO J. 2000 Jan 4;19(1):25-36. doi: 10.1093/emboj/19.1.25.
10
The structural basis for the oriented assembly of a TBP/TFB/promoter complex.
Proc Natl Acad Sci U S A. 1999 Nov 23;96(24):13668-73. doi: 10.1073/pnas.96.24.13668.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验