Suppr超能文献

古菌组蛋白介导的抑制背景下的转录激活。

Transcriptional activation in the context of repression mediated by archaeal histones.

机构信息

Division of Biological Sciences, Section of Molecular Biology, University of California San Diego, La Jolla, CA 92093-0634, USA.

出版信息

Proc Natl Acad Sci U S A. 2010 Apr 13;107(15):6777-81. doi: 10.1073/pnas.1002360107. Epub 2010 Mar 29.

Abstract

Many archaea (including all the methanogens, nearly all euryarchaeotes, and some crenarchaeotes) use histones as components of the chromatin that compacts their genomes. The archaeal histones are homo- and heterodimers that pair on DNA to form tetrasomes (as the eukaryotic histones H3 and H4 do). The resulting DNA packaging is known to interfere with assembly of the archaeal transcription apparatus at promoters; the ability of transcriptional activation to function in repressive archaeal chromatin has not yet been explored in vitro. Using four of the Methanocaldococcus jannaschii (Mja) histones, we have examined activation of the model Mja rb2 transcription unit by the Mja transcriptional activator Ptr2 in this simplified-chromatin context. Using hydroxyl radical footprinting, we find that the Ptr2-specific rb2 upstream activating site is a preferred histone-localizing site that nucleates histone: DNA-binding radiating from the rb2 promoter. Nevertheless, Ptr2 competes effectively with histones for access to the rb2 promoter and most potently activates transcription in vitro at histone concentrations that extensively coat DNA and essentially silence basal transcription.

摘要

许多古菌(包括所有产甲烷菌、几乎所有的广古菌以及一些泉古菌)将组蛋白作为染色质的组成部分,用于压缩它们的基因组。古菌组蛋白是形成四聚体的同源和异源二聚体(与真核生物的组蛋白 H3 和 H4 相同)。已知这种 DNA 包装会干扰转录装置在启动子处的组装;体外尚未探索转录激活在抑制性古菌染色质中发挥作用的能力。我们使用了四种 Methanocaldococcus jannaschii(Mja)组蛋白,在这种简化的染色质环境中,研究了 Mja 转录激活因子 Ptr2 对模型 Mja rb2 转录单元的激活作用。通过羟基自由基足迹法,我们发现 Ptr2 特异性的 rb2 上游激活位点是一个优先的组蛋白定位位点,从 rb2 启动子开始形成组蛋白与 DNA 结合的辐射状结构。然而,Ptr2 能够有效地与组蛋白竞争进入 rb2 启动子的机会,并且在体外以最有效的方式激活转录,其组蛋白浓度可以广泛覆盖 DNA,并基本上沉默基础转录。

相似文献

1
Transcriptional activation in the context of repression mediated by archaeal histones.
Proc Natl Acad Sci U S A. 2010 Apr 13;107(15):6777-81. doi: 10.1073/pnas.1002360107. Epub 2010 Mar 29.
2
Hybrid Ptr2-like activators of archaeal transcription.
Mol Microbiol. 2009 Nov;74(3):582-93. doi: 10.1111/j.1365-2958.2009.06884.x. Epub 2009 Sep 22.
4
Promoter architecture and response to a positive regulator of archaeal transcription.
Mol Microbiol. 2005 May;56(3):625-37. doi: 10.1111/j.1365-2958.2005.04563.x.
5
Archaeal DNA on the histone merry-go-round.
FEBS J. 2018 Sep;285(17):3168-3174. doi: 10.1111/febs.14495. Epub 2018 Jun 15.
6
Archaea: The Final Frontier of Chromatin.
J Mol Biol. 2021 Mar 19;433(6):166791. doi: 10.1016/j.jmb.2020.166791. Epub 2020 Dec 29.
7
An expanding family of archaeal transcriptional activators.
Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15423-8. doi: 10.1073/pnas.0508043102. Epub 2005 Oct 17.
8
Archaeal chromatin and transcription.
Mol Microbiol. 2003 May;48(3):587-98. doi: 10.1046/j.1365-2958.2003.03439.x.
10
The Role of Archaeal Chromatin in Transcription.
J Mol Biol. 2019 Sep 20;431(20):4103-4115. doi: 10.1016/j.jmb.2019.05.006. Epub 2019 May 11.

引用本文的文献

1
Chromatin and gene regulation in archaea.
Mol Microbiol. 2025 Mar;123(3):218-231. doi: 10.1111/mmi.15302. Epub 2024 Aug 3.
2
Archaeal histone-based chromatin structures regulate transcription elongation rates.
Commun Biol. 2024 Feb 27;7(1):236. doi: 10.1038/s42003-024-05928-w.
3
DNA-bridging by an archaeal histone variant via a unique tetramerisation interface.
Commun Biol. 2023 Sep 22;6(1):968. doi: 10.1038/s42003-023-05348-2.
4
Specific DNA binding of archaeal histones HMfA and HMfB.
Front Microbiol. 2023 Apr 18;14:1166608. doi: 10.3389/fmicb.2023.1166608. eCollection 2023.
5
Role of the histone tails in histone octamer transfer.
Nucleic Acids Res. 2023 May 8;51(8):3671-3678. doi: 10.1093/nar/gkad079.
6
An archaeal histone-like protein regulates gene expression in response to salt stress.
Nucleic Acids Res. 2021 Dec 16;49(22):12732-12743. doi: 10.1093/nar/gkab1175.
7
Extended Archaeal Histone-Based Chromatin Structure Regulates Global Gene Expression in .
Front Microbiol. 2021 May 13;12:681150. doi: 10.3389/fmicb.2021.681150. eCollection 2021.
8
Archaeal transcription.
Transcription. 2020 Oct;11(5):199-210. doi: 10.1080/21541264.2020.1838865. Epub 2020 Oct 28.
9
Chromatinization of with archaeal histones.
Elife. 2019 Nov 6;8:e49038. doi: 10.7554/eLife.49038.
10
The Role of Archaeal Chromatin in Transcription.
J Mol Biol. 2019 Sep 20;431(20):4103-4115. doi: 10.1016/j.jmb.2019.05.006. Epub 2019 May 11.

本文引用的文献

1
Hybrid Ptr2-like activators of archaeal transcription.
Mol Microbiol. 2009 Nov;74(3):582-93. doi: 10.1111/j.1365-2958.2009.06884.x. Epub 2009 Sep 22.
2
Archaeal intrinsic transcription termination in vivo.
J Bacteriol. 2009 Nov;191(22):7102-8. doi: 10.1128/JB.00982-09. Epub 2009 Sep 11.
3
The logic of chromatin architecture and remodelling at promoters.
Nature. 2009 Sep 10;461(7261):193-8. doi: 10.1038/nature08450.
4
The biology of chromatin remodeling complexes.
Annu Rev Biochem. 2009;78:273-304. doi: 10.1146/annurev.biochem.77.062706.153223.
5
Histone modifications dictate specific biological readouts.
J Genet Genomics. 2009 Feb;36(2):75-88. doi: 10.1016/S1673-8527(08)60094-6.
6
Nucleosome positioning and gene regulation: advances through genomics.
Nat Rev Genet. 2009 Mar;10(3):161-72. doi: 10.1038/nrg2522.
7
Nanoarchaeal origin of histone H3?
J Bacteriol. 2009 Feb;191(3):1092-6. doi: 10.1128/JB.01431-08. Epub 2008 Dec 1.
8
TBP domain symmetry in basal and activated archaeal transcription.
Mol Microbiol. 2009 Jan;71(1):123-31. doi: 10.1111/j.1365-2958.2008.06512.x. Epub 2008 Nov 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验