Schredelseker Johann, Dayal Anamika, Schwerte Thorsten, Franzini-Armstrong Clara, Grabner Manfred
Department of Medical Genetics, Clinical and Molecular Pharmacology, Division of Biochemical Pharmacology, Innsbruck Medical University, A-6020 Innsbruck, Austria.
J Biol Chem. 2009 Jan 9;284(2):1242-51. doi: 10.1074/jbc.M807767200. Epub 2008 Nov 13.
The paralyzed zebrafish strain relaxed carries a null mutation for the skeletal muscle dihydropyridine receptor (DHPR) beta(1a) subunit. Lack of beta(1a) results in (i) reduced membrane expression of the pore forming DHPR alpha(1S) subunit, (ii) elimination of alpha(1S) charge movement, and (iii) impediment of arrangement of the DHPRs in groups of four (tetrads) opposing the ryanodine receptor (RyR1), a structural prerequisite for skeletal muscle-type excitation-contraction (EC) coupling. In this study we used relaxed larvae and isolated myotubes as expression systems to discriminate specific functions of beta(1a) from rather general functions of beta isoforms. Zebrafish and mammalian beta(1a) subunits quantitatively restored alpha(1S) triad targeting and charge movement as well as intracellular Ca(2+) release, allowed arrangement of DHPRs in tetrads, and most strikingly recovered a fully motile phenotype in relaxed larvae. Interestingly, the cardiac/neuronal beta(2a) as the phylogenetically closest, and the ancestral housefly beta(M) as the most distant isoform to beta(1a) also completely recovered alpha(1S) triad expression and charge movement. However, both revealed drastically impaired intracellular Ca(2+) transients and very limited tetrad formation compared with beta(1a). Consequently, larval motility was either only partially restored (beta(2a)-injected larvae) or not restored at all (beta(M)). Thus, our results indicate that triad expression and facilitation of 1,4-dihydropyridine receptor (DHPR) charge movement are common features of all tested beta subunits, whereas the efficient arrangement of DHPRs in tetrads and thus intact DHPR-RyR1 coupling is only promoted by the beta(1a) isoform. Consequently, we postulate a model that presents beta(1a) as an allosteric modifier of alpha(1S) conformation enabling skeletal muscle-type EC coupling.
瘫痪的斑马鱼品系relaxed携带骨骼肌二氢吡啶受体(DHPR)β(1a)亚基的无效突变。β(1a)的缺失导致:(i)形成孔道的DHPRα(1S)亚基的膜表达减少;(ii)α(1S)电荷移动消失;(iii)阻碍DHPRs以四个一组(四联体)的形式排列在与兰尼碱受体(RyR1)相对的位置,而这是骨骼肌型兴奋-收缩(EC)偶联的一个结构前提条件。在本研究中,我们使用relaxed幼虫和分离的肌管作为表达系统,以区分β(1a)的特定功能与β亚型的一般功能。斑马鱼和哺乳动物的β(1a)亚基在数量上恢复了α(1S)三联体定位和电荷移动以及细胞内Ca(2+)释放,使DHPRs能够排列成四联体,最显著的是恢复了relaxed幼虫的完全运动表型。有趣的是,与β(1a)在系统发育上最接近的心脏/神经元β(2a),以及与β(1a)最遥远的祖先家蝇β(M),也完全恢复了α(1S)三联体表达和电荷移动。然而,与β(1a)相比,两者均显示出细胞内Ca(2+)瞬变严重受损且四联体形成非常有限。因此,幼虫的运动能力要么仅部分恢复(注射β(2a)的幼虫),要么根本未恢复(注射β(M)的幼虫)。因此,我们的结果表明,三联体表达和促进1,4-二氢吡啶受体(DHPR)电荷移动是所有测试的β亚基的共同特征,而只有β(1a)亚型能促进DHPRs有效地排列成四联体,从而实现完整的DHPR-RyR1偶联。因此,我们提出了一个模型,将β(1a)视为α(1S)构象的变构调节剂,从而实现骨骼肌型EC偶联。