Department of Pharmacology, Medical University of Innsbruck, A-6020 Innsbruck, Austria.
Department of Physiology and Biophysics, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045.
Proc Natl Acad Sci U S A. 2022 May 10;119(19):e2201136119. doi: 10.1073/pnas.2201136119. Epub 2022 May 4.
The skeletal muscle dihydropyridine receptor (DHPR) β1a subunit is indispensable for full trafficking of DHPRs into triadic junctions (i.e., the close apposition of transverse tubules and sarcoplasmic reticulum [SR]), facilitation of DHPRα1S voltage sensing, and arrangement of DHPRs into tetrads as a consequence of their interaction with ryanodine receptor (RyR1) homotetramers. These three features are obligatory for skeletal muscle excitation–contraction (EC) coupling. Previously, we showed that all four vertebrate β isoforms (β1–β4) facilitate α1S triad targeting and, except for β3, fully enable DHPRα1S voltage sensing [Dayal et al., Proc. Natl. Acad. Sci. U.S.A. 110, 7488–7493 (2013)]. Consequently, β3 failed to restore EC coupling despite the fact that both β3 and β1a restore tetrads. Thus, all β-subunits are able to restore triad targeting, but only β1a restores both tetrads and proper DHPR–RyR1 coupling [Dayal et al., Proc. Natl. Acad. Sci. U.S.A. 110, 7488–7493 (2013)]. To investigate the molecular region(s) of β1a responsible for the tetradic arrangement of DHPRs and thus DHPR–RyR1 coupling, we expressed loss- and gain-of-function chimeras between β1a and β4, with systematically swapped domains in zebrafish strain relaxed (β1-null) for patch clamp, cytoplasmic Ca2+ transients, motility, and freeze-fracture electron microscopy. β1a/β4 chimeras with either N terminus, SH3, HOOK, or GK domain derived from β4 showed complete restoration of SR Ca2+ release. However, chimera β1a/β4(C) with β4 C terminus produced significantly reduced cytoplasmic Ca2+ transients. Conversely, gain-of-function chimera β4/β1a(C) with β1a C terminus completely restored cytoplasmic Ca2+ transients, DHPR tetrads, and motility. Furthermore, we found that the nonconserved, distal C terminus of β1a plays a pivotal role in reconstitution of DHPR tetrads and thus allosteric DHPR–RyR1 interaction, essential for skeletal muscle EC coupling.
骨骼肌二氢吡啶受体(DHPR)β1a 亚基对于 DHPR 完全转运到三联体结(即横小管和肌浆网[SR]的紧密附着)、DHPRα1S 电压感应的促进以及 DHPR 与肌质网钙释放通道(RyR1)四聚体的相互作用排列成四联体是必不可少的。这三个特征对于骨骼肌兴奋-收缩(EC)偶联是必需的。以前,我们发现所有四种脊椎动物β异构体(β1-β4)都有助于α1S 三联体靶向,除了β3 之外,β1-β4 完全使 DHPRα1S 电压感应正常[Dayal 等人,美国国家科学院院刊 110,7488-7493(2013)]。因此,尽管β3 和β1a 都能恢复四联体,但β3 未能恢复 EC 偶联。因此,所有β亚基都能够恢复三联体靶向,但只有β1a 既能恢复四联体,又能恢复 DHPR-RyR1 的偶联[Dayal 等人,美国国家科学院院刊 110,7488-7493(2013)]。为了研究负责 DHPR 四联体排列和因此 DHPR-RyR1 偶联的β1a 的分子区域,我们在斑马鱼松弛(β1 缺失)品系中表达了β1a 和β4 之间的功能丧失和获得功能嵌合体,其中系统地交换了结构域,用于膜片钳、细胞质 Ca2+瞬变、运动和冷冻断裂电子显微镜。β1a/β4 嵌合体的 N 端、SH3、HOOK 或 GK 结构域来自β4 显示出完全恢复 SR Ca2+释放。然而,β4 来源的β1a/β4(C)嵌合体的 C 端产生了显著减少的细胞质 Ca2+瞬变。相反,具有β1a C 端的功能获得嵌合体β4/β1a(C)完全恢复了细胞质 Ca2+瞬变、DHPR 四联体和运动。此外,我们发现β1a 的非保守、远端 C 端在 DHPR 四联体的重建中起着关键作用,并且在骨骼肌 EC 偶联中对于变构的 DHPR-RyR1 相互作用是必需的。