Glew R H, Gopalan V, Hubbell C A, Devraj R V, Lawson R A, Diven W F, Mannock D A
Department of Biochemistry, School of Medicine, University of New Mexico, Albuquerque 87131.
Biochem J. 1991 Mar 1;274 ( Pt 2)(Pt 2):557-63. doi: 10.1042/bj2740557.
Glucocerebrosidase, the lysosomal enzyme that is deficient in patients with Gaucher's disease, hydrolyses non-physiological aryl beta-D-glucosides and glucocerebroside, its substrate in vivo. We document that 2,3,-di-O-tetradecyl-1-O-(beta-D-glucopyranosyl)-sn-glycerol (2,3,-di-14:0-beta-Glc-DAG) inhibits human placental glucocerebrosidase activity in vitro (Ki 0.18 mM), and the nature of inhibition is typical of a mixed-type pattern. Furthermore, 2,3-di-14:0-beta-Glc-DAG was shown to be an excellent substrate for the lysosomal beta-glucosidase (Km 0.15 mM; Vmax. 19.8 units/mg) when compared with the natural substrate glucocerebroside (Km 0.080 mM; Vmax. 10.4 units/mg). The observations that (i) glucocerebrosidase-catalysed hydrolysis of 2,3-di-14:0-beta-Glc-DAG is inhibited by conduritol B epoxide and glucosylsphingosine, and (ii) spleen and brain extracts from patients with Gaucher's disease are unable to hydrolyse 2,3-di-14:O-beta-Glc-DAG demonstrate that the same active site on the enzyme is responsible for catalysing the hydrolysis of 4-methylumbelliferyl beta-D-glucopyranoside, glucocerebroside and 2,3-di-14:O-beta-Glc-DAG. With the aid of computer modelling we have established that the oxygen atoms in 2,3-DAG-Glc at the C-1, C-4*, C-5* (the ring oxygen in glucose) and C-2 positions correspond topologically to the oxygens at C-1, C-4* and C-5* and the nitrogen atom attached to C-2 respectively in glucocerebroside (* signifies a carbon atom in glucose); furthermore, all of the distances with respect to overlap of corresponding heteroatoms range from 0.02 A to 0.77 A (0.002-0.077 nm). A root-mean-square deviation of 0.31 A (0.031 nm) was obtained when the energy-minimized structures of 2,3-di-14:O-beta-Glc-DAG and glucocerebroside were compared using the latter four heteroatom co-ordinates.
葡糖脑苷脂酶是一种溶酶体酶,戈谢病患者体内该酶缺乏,它能水解非生理性芳基β - D - 葡糖苷和葡糖脑苷脂(其体内底物)。我们证明,2,3 - 二 - O - 十四烷基 - 1 - O -(β - D - 吡喃葡萄糖基)- sn - 甘油(2,3 - 二 - 14:0 - β - Glc - DAG)在体外抑制人胎盘葡糖脑苷脂酶活性(Ki为0.18 mM),且抑制性质为典型的混合型模式。此外,与天然底物葡糖脑苷脂(Km为0.080 mM;Vmax为10.4单位/毫克)相比,2,3 - 二 - 14:0 - β - Glc - DAG被证明是溶酶体β - 葡糖苷酶的优良底物(Km为0.15 mM;Vmax为19.8单位/毫克)。以下观察结果:(i)环氧康杜立醇和葡糖基鞘氨醇抑制葡糖脑苷脂酶催化的2,3 - 二 - 14:0 - β - Glc - DAG水解,以及(ii)戈谢病患者的脾脏和脑提取物无法水解2,3 - 二 - 14:O - β - Glc - DAG,表明该酶上的同一活性位点负责催化4 - 甲基伞形酮基β - D - 吡喃葡萄糖苷、葡糖脑苷脂和2,3 - 二 - 14:O - β - Glc - DAG的水解。借助计算机建模,我们已确定2,3 - DAG - Glc中C - 1、C - 4*、C - 5*(葡萄糖中的环氧)和C - 2位置的氧原子在拓扑结构上分别对应葡糖脑苷脂中C - 1、C - 4和C - 5的氧原子以及连接在C - 2上的氮原子(*表示葡萄糖中的碳原子);此外,所有相应杂原子重叠的距离范围为0.02 Å至0.77 Å(0.002 - 至0.077 nm)。当使用后四个杂原子坐标比较2,3 - 二 - 14:O - β - Glc - DAG和葡糖脑苷脂的能量最小化结构时,得到的均方根偏差为0.31 Å(0.031 nm)。