Kavanagh K L, Jörnvall H, Persson B, Oppermann U
Structural Genomics Consortium, University of Oxford, United Kingdom.
Cell Mol Life Sci. 2008 Dec;65(24):3895-906. doi: 10.1007/s00018-008-8588-y.
Short-chain dehydrogenases/reductases (SDRs) constitute a large family of NAD(P)(H)-dependent oxidoreductases, sharing sequence motifs and displaying similar mechanisms. SDR enzymes have critical roles in lipid, amino acid, carbohydrate, cofactor, hormone and xenobiotic metabolism as well as in redox sensor mechanisms. Sequence identities are low, and the most conserved feature is an alpha/beta folding pattern with a central beta sheet flanked by 2 - 3 alpha-helices from each side, thus a classical Rossmannfold motif for nucleotide binding. The conservation of this element and an active site, often with an Asn-Ser-Tyr-Lys tetrad, provides a platform for enzymatic activities encompassing several EC classes, including oxidoreductases, epimerases and lyases. The common mechanism is an underlying hydride and proton transfer involving the nicotinamide and typically an active site tyrosine residue, whereas substrate specificity is determined by a variable C-terminal segment. Relationships exist with bacterial haloalcohol dehalogenases, which lack cofactor binding but have the active site architecture, emphasizing the versatility of the basic fold in also generating hydride transfer-independent lyases. The conserved fold and nucleotide binding emphasize the role of SDRs as scaffolds for an NAD(P)(H) redox sensor system, of importance to control metabolic routes, transcription and signalling.
短链脱氢酶/还原酶(SDRs)构成了一大类依赖NAD(P)(H)的氧化还原酶,它们具有共同的序列基序并表现出相似的作用机制。SDR酶在脂质、氨基酸、碳水化合物、辅因子、激素和外源性物质代谢以及氧化还原传感机制中发挥着关键作用。序列同一性较低,最保守的特征是一种α/β折叠模式,中央为β折叠片层,两侧各有2 - 3个α螺旋,因此是一种用于核苷酸结合的经典罗斯曼折叠基序。该元件和一个通常具有天冬酰胺 - 丝氨酸 - 酪氨酸 - 赖氨酸四联体的活性位点的保守性,为包括氧化还原酶、差向异构酶和裂合酶在内的几种酶分类的酶活性提供了一个平台。常见机制是涉及烟酰胺和通常一个活性位点酪氨酸残基的潜在氢化物和质子转移,而底物特异性由可变的C末端片段决定。与细菌卤代醇脱卤酶存在关联,后者缺乏辅因子结合但具有活性位点结构,这强调了基本折叠在产生不依赖氢化物转移的裂合酶方面的多功能性。保守的折叠和核苷酸结合强调了SDRs作为NAD(P)(H)氧化还原传感系统支架的作用,这对于控制代谢途径、转录和信号传导至关重要。