Suppr超能文献

使用图像配准技术对小鼠大脑的系列磁共振图像进行分析。

Analysis of serial magnetic resonance images of mouse brains using image registration.

作者信息

Maheswaran Satheesh, Barjat Hervé, Bate Simon T, Aljabar Paul, Hill Derek L G, Tilling Lorna, Upton Neil, James Michael F, Hajnal Joseph V, Rueckert Daniel

机构信息

Department of Computing, South Kensington Campus, Imperial College, London, UK. address:

出版信息

Neuroimage. 2009 Feb 1;44(3):692-700. doi: 10.1016/j.neuroimage.2008.10.016. Epub 2008 Oct 29.

Abstract

The aim of this paper is to investigate techniques that can identify and quantify cross-sectional differences and longitudinal changes in vivo from magnetic resonance images of murine models of brain disease. Two different approaches have been compared. The first approach is a segmentation-based approach: Each subject at each time point is automatically segmented into a number of anatomical structures using atlas-based segmentation. This allows cross-sectional and longitudinal analyses of group differences on a structure-by-structure basis. The second approach is a deformation-based approach: Longitudinal changes are quantified by the registration of each subject's follow-up images to that subject's baseline image. In addition the baseline images can be registered to an atlas allowing voxel-wise analysis of cross-sectional differences between groups. Both approaches have been tested on two groups of mice: A transgenic model of Alzheimer's disease and a wild-type background strain, using serial imaging performed over the age range from 6-14 months. We show that both approaches are able to identify longitudinal and cross-sectional differences. However, atlas-based segmentation suffers from the inability to detect differences across populations and across time in regions which are much smaller than the anatomical regions. In contrast to this, the deformation-based approach can detect statistically significant differences in highly localized areas.

摘要

本文的目的是研究能够从脑部疾病小鼠模型的磁共振图像中识别和量化体内横断面差异及纵向变化的技术。已对两种不同方法进行了比较。第一种方法是基于分割的方法:使用基于图谱的分割将每个时间点的每个受试者自动分割为多个解剖结构。这允许在逐个结构的基础上对组间差异进行横断面和纵向分析。第二种方法是基于变形的方法:通过将每个受试者的随访图像与该受试者的基线图像配准来量化纵向变化。此外,基线图像可与图谱配准,从而对组间横断面差异进行体素级分析。两种方法均已在两组小鼠上进行测试:一组是阿尔茨海默病转基因模型,另一组是野生型背景品系,使用在6至14个月龄范围内进行的连续成像。我们表明两种方法都能够识别纵向和横断面差异。然而,基于图谱的分割在比解剖区域小得多的区域中无法检测不同群体之间以及不同时间之间的差异。与此相反,基于变形的方法能够在高度局部化的区域中检测到具有统计学意义的差异。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验