Moore Sean D, Sauer Robert T
Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
Proc Natl Acad Sci U S A. 2008 Nov 25;105(47):18261-6. doi: 10.1073/pnas.0810357105. Epub 2008 Nov 17.
Bacterial antibiotic resistance can occur by many mechanisms. An intriguing class of mutants is resistant to macrolide antibiotics even though these drugs still bind to their targets. For example, a 3-residue deletion (DeltaMKR) in ribosomal protein L22 distorts a loop that forms a constriction in the ribosome exit tunnel, apparently allowing nascent-chain egress and translation in the presence of bound macrolides. Here, however, we demonstrate that DeltaMKR and wild-type ribosomes show comparable macrolide sensitivity in vitro. In Escherichia coli, we find that this mutation reduces antibiotic occupancy of the target site on ribosomes in a manner largely dependent on the AcrAB-TolC efflux system. We propose a model for antibiotic resistance in which DeltaMKR ribosomes alter the translation of specific proteins, possibly via changes in programmed stalling, and modify the cell envelope in a manner that lowers steady-state macrolide levels.
细菌对抗生素的耐药性可通过多种机制产生。一类有趣的突变体对大环内酯类抗生素具有耐药性,尽管这些药物仍能与其靶点结合。例如,核糖体蛋白L22中的一个3个氨基酸的缺失(ΔMKR)会使核糖体出口通道中形成收缩的一个环发生扭曲,这显然使得新生链在存在结合的大环内酯类药物的情况下仍能排出并进行翻译。然而,在此我们证明,ΔMKR核糖体和野生型核糖体在体外对大环内酯类药物表现出相当的敏感性。在大肠杆菌中,我们发现这种突变在很大程度上依赖于AcrAB-TolC外排系统,降低了核糖体上靶点部位的抗生素占有率。我们提出了一种抗生素耐药性模型,其中ΔMKR核糖体可能通过程序性停顿的变化改变特定蛋白质的翻译,并以降低稳态大环内酯类药物水平的方式修饰细胞膜。