Suppr超能文献

通过θ细胞、网格细胞和位置细胞的三阶段模型将相位编码位置信号转换为速率编码位置信号。

Conversion of a phase- to a rate-coded position signal by a three-stage model of theta cells, grid cells, and place cells.

作者信息

Blair Hugh T, Gupta Kishan, Zhang Kechen

机构信息

Psychology Department, University of California, Los Angeles, California 90095-1563, USA.

出版信息

Hippocampus. 2008;18(12):1239-55. doi: 10.1002/hipo.20509.

Abstract

As a rat navigates through a familiar environment, its position in space is encoded by firing rates of place cells and grid cells. Oscillatory interference models propose that this positional firing rate code is derived from a phase code, which stores the rat's position as a pattern of phase angles between velocity-modulated theta oscillations. Here we describe a three-stage network model, which formalizes the computational steps that are necessary for converting phase-coded position signals (represented by theta oscillations) into rate-coded position signals (represented by grid cells and place cells). The first stage of the model proposes that the phase-coded position signal is stored and updated by a bank of ring attractors, like those that have previously been hypothesized to perform angular path integration in the head-direction cell system. We show analytically how ring attractors can serve as central pattern generators for producing velocity-modulated theta oscillations, and we propose that such ring attractors may reside in subcortical areas where hippocampal theta rhythm is known to originate. In the second stage of the model, grid fields are formed by oscillatory interference between theta cells residing in different (but not the same) ring attractors. The model's third stage assumes that hippocampal neurons generate Gaussian place fields by computing weighted sums of inputs from a basis set of many grid fields. Here we show that under this assumption, the spatial frequency spectrum of the Gaussian place field defines the vertex spacings of grid cells that must provide input to the place cell. This analysis generates a testable prediction that grid cells with large vertex spacings should send projections to the entire hippocampus, whereas grid cells with smaller vertex spacings may project more selectively to the dorsal hippocampus, where place fields are smallest.

摘要

当一只大鼠在熟悉的环境中导航时,其在空间中的位置由位置细胞和网格细胞的放电频率编码。振荡干扰模型提出,这种位置放电频率编码源自相位编码,相位编码将大鼠的位置存储为速度调制的θ振荡之间的相位角模式。在这里,我们描述了一个三阶段网络模型,该模型将把相位编码的位置信号(由θ振荡表示)转换为频率编码的位置信号(由网格细胞和位置细胞表示)所需的计算步骤形式化。模型的第一阶段提出,相位编码的位置信号由一组环形吸引子存储和更新,就像之前假设在头部方向细胞系统中执行角路径积分的那些吸引子一样。我们通过分析表明环形吸引子如何作为中央模式发生器来产生速度调制的θ振荡,并且我们提出这种环形吸引子可能存在于已知海马θ节律起源的皮层下区域。在模型的第二阶段,网格场由位于不同(但不是相同)环形吸引子中的θ细胞之间的振荡干扰形成。模型的第三阶段假设海马神经元通过计算来自许多网格场基集的输入的加权和来生成高斯位置场。在这里我们表明,在这个假设下,高斯位置场的空间频率谱定义了必须向位置细胞提供输入的网格细胞的顶点间距。这一分析产生了一个可测试的预测,即具有大顶点间距的网格细胞应该向整个海马体发送投射,而具有较小顶点间距的网格细胞可能更有选择性地投射到背侧海马体,那里的位置场最小。

相似文献

2
Grid cells and theta as oscillatory interference: theory and predictions.
Hippocampus. 2008;18(12):1157-74. doi: 10.1002/hipo.20518.
5
Coordinated learning of grid cell and place cell spatial and temporal properties: multiple scales, attention and oscillations.
Philos Trans R Soc Lond B Biol Sci. 2013 Dec 23;369(1635):20120524. doi: 10.1098/rstb.2012.0524. Print 2014 Feb 5.
8
Theta-modulated feedforward network generates rate and phase coded firing in the entorhino-hippocampal system.
IEEE Trans Neural Netw. 2004 Sep;15(5):1092-9. doi: 10.1109/TNN.2004.833304.
9
Alternating predictive and short-term memory modes of entorhinal grid cells.
Hippocampus. 2012 Aug;22(8):1647-51. doi: 10.1002/hipo.22030. Epub 2012 May 2.

引用本文的文献

1
Challenges for Place and Grid Cell Models.
Adv Exp Med Biol. 2022;1359:285-312. doi: 10.1007/978-3-030-89439-9_12.
4
The interplay between somatic and dendritic inhibition promotes the emergence and stabilization of place fields.
PLoS Comput Biol. 2020 Jul 10;16(7):e1007955. doi: 10.1371/journal.pcbi.1007955. eCollection 2020 Jul.
7
Recalibration of path integration in hippocampal place cells.
Nature. 2019 Feb;566(7745):533-537. doi: 10.1038/s41586-019-0939-3. Epub 2019 Feb 11.
9
Spatial synchronization codes from coupled rate-phase neurons.
PLoS Comput Biol. 2019 Jan 25;15(1):e1006741. doi: 10.1371/journal.pcbi.1006741. eCollection 2019 Jan.

本文引用的文献

3
Progressive increase in grid scale from dorsal to ventral medial entorhinal cortex.
Hippocampus. 2008;18(12):1200-12. doi: 10.1002/hipo.20504.
4
Grid cells and theta as oscillatory interference: theory and predictions.
Hippocampus. 2008;18(12):1157-74. doi: 10.1002/hipo.20518.
5
A metric for space.
Hippocampus. 2008;18(12):1142-56. doi: 10.1002/hipo.20483.
7
Cognitive maps in rats and men.
Psychol Rev. 1948 Jul;55(4):189-208. doi: 10.1037/h0061626.
8
What grid cells convey about rat location.
J Neurosci. 2008 Jul 2;28(27):6858-71. doi: 10.1523/JNEUROSCI.5684-07.2008.
9
Hippocampus-independent phase precession in entorhinal grid cells.
Nature. 2008 Jun 26;453(7199):1248-52. doi: 10.1038/nature06957. Epub 2008 May 14.
10
Impact of temporal coding of presynaptic entorhinal cortex grid cells on the formation of hippocampal place fields.
Neural Netw. 2008 Mar-Apr;21(2-3):303-10. doi: 10.1016/j.neunet.2007.12.032. Epub 2007 Dec 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验