Biomedical Engineering Department, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
Psychology Department, University of California, Los Angeles, Los Angeles, CA, USA.
PLoS Comput Biol. 2019 Jan 25;15(1):e1006741. doi: 10.1371/journal.pcbi.1006741. eCollection 2019 Jan.
During spatial navigation, the frequency and timing of spikes from spatial neurons including place cells in hippocampus and grid cells in medial entorhinal cortex are temporally organized by continuous theta oscillations (6-11 Hz). The theta rhythm is regulated by subcortical structures including the medial septum, but it is unclear how spatial information from place cells may reciprocally organize subcortical theta-rhythmic activity. Here we recorded single-unit spiking from a constellation of subcortical and hippocampal sites to study spatial modulation of rhythmic spike timing in rats freely exploring an open environment. Our analysis revealed a novel class of neurons that we termed 'phaser cells,' characterized by a symmetric coupling between firing rate and spike theta-phase. Phaser cells encoded space by assigning distinct phases to allocentric isocontour levels of each cell's spatial firing pattern. In our dataset, phaser cells were predominantly located in the lateral septum, but also the hippocampus, anteroventral thalamus, lateral hypothalamus, and nucleus accumbens. Unlike the unidirectional late-to-early phase precession of place cells, bidirectional phase modulation acted to return phaser cells to the same theta-phase along a given spatial isocontour, including cells that characteristically shifted to later phases at higher firing rates. Our dynamical models of intrinsic theta-bursting neurons demonstrated that experience-independent temporal coding mechanisms can qualitatively explain (1) the spatial rate-phase relationships of phaser cells and (2) the observed temporal segregation of phaser cells according to phase-shift direction. In open-field phaser cell simulations, competitive learning embedded phase-code entrainment maps into the weights of downstream targets, including path integration networks. Bayesian phase decoding revealed error correction capable of resetting path integration at subsecond timescales. Our findings suggest that phaser cells may instantiate a subcortical theta-rhythmic loop of spatial feedback. We outline a framework in which location-dependent synchrony reconciles internal idiothetic processes with the allothetic reference points of sensory experience.
在空间导航过程中,海马体中的位置细胞和内嗅皮层中的网格细胞等空间神经元的尖峰频率和时间由连续的 theta 振荡(6-11 Hz)进行时间组织。theta 节律受包括内侧隔核在内的皮质下结构调节,但尚不清楚来自位置细胞的空间信息如何反向组织皮质下 theta 节律活动。在这里,我们记录了来自皮质下和海马体一系列部位的单个单元的尖峰放电,以研究大鼠在自由探索开放环境时的节律性尖峰时间的空间调制。我们的分析揭示了一类新的神经元,我们称之为“相位细胞”,其特征是放电率和尖峰 theta 相位之间的对称耦合。相位细胞通过将特定相位分配给每个细胞的空间放电模式的无向等距水平来对空间进行编码。在我们的数据集,相位细胞主要位于外侧隔核,但也存在于海马体、前腹侧丘脑、外侧下丘脑和伏隔核中。与位置细胞的单向晚到早的相位超前不同,双向相位调制作用是使相位细胞沿给定的空间等距回到相同的 theta 相位,包括特征性地在较高放电率下转换到较晚相位的细胞。我们的内在 theta 突发神经元动力学模型表明,经验独立的时间编码机制可以定性地解释(1)相位细胞的空间率相位关系和(2)根据相位偏移方向观察到的相位细胞的时间分离。在开放场相位细胞模拟中,竞争学习将相位编码的锁定图嵌入到下游目标的权重中,包括路径整合网络。贝叶斯相位解码揭示了能够在亚秒时间尺度上重置路径整合的纠错能力。我们的发现表明,相位细胞可能实例化了一个皮质下的 theta 节律空间反馈回路。我们提出了一个框架,其中位置依赖的同步将内部自运动过程与感觉经验的外部参考点协调起来。