Suppr超能文献

凝血酶原片段1和人血清白蛋白与一水草酸钙无机晶体及尿晶体的面特异性结合。

Face-specific binding of prothrombin fragment 1 and human serum albumin to inorganic and urinary calcium oxalate monohydrate crystals.

作者信息

Cook Alison F, Grover Phulwinder K, Ryall Rosemary L

机构信息

Department of Surgery, Flinders University School of Medicine, Flinders Medical Centre, Bedford Park, South Australia, Australia.

出版信息

BJU Int. 2009 Mar;103(6):826-35. doi: 10.1111/j.1464-410X.2008.08195.x. Epub 2008 Nov 13.

Abstract

OBJECTIVE

To compare the intracrystalline distributions of prothrombin fragment 1 (PTF1) and human serum albumin (HSA) within inorganic and urinary calcium oxalate (CaOx) monohydrate (COM) crystals and to determine whether binding of PTF1 can be explained by interactions between particular gamma-carboxyglutamic (Gla) residues and atomic arrays on individual faces of the COM crystal. MATERIALS AND METHODS COM: crystals were precipitated from inorganic solutions and ultrafiltered urine containing fluorescent HSA or PTF1 at different relative concentrations and examined by fluorescence microscopy. Accelrys Materials Studio and Discovery Studio were used to model the binding of PTF1 to the top, side and apical faces of the COM crystal.

RESULTS

PTF1 alone always adsorbed predominantly to the COM apical surfaces, while HSA bound principally to the side faces under inorganic conditions, but to the apical faces in urine. In the presence of each other, both proteins competed for adsorption to the apical faces, with attachment of PTF1 dominating over that of HSA. Modelling showed that urinary PTF1 had equal theoretical bonding potential for all three COM surfaces.

CONCLUSIONS

(i) Anisotropic inclusion of HSA and PTF1 into urinary and inorganic COM crystals results from their preferential binding to specific COM faces; (ii) the binding preference of HSA differs under inorganic and urinary conditions; (iii) preferential binding of PTF1 to the apical faces of COM is more complex than can be explained by interactions between Gla groups and surface atomic arrays; (iv) future studies of interactions between urinary proteins and stone mineral crystal surfaces should be performed in urine.

摘要

目的

比较凝血酶原片段1(PTF1)和人血清白蛋白(HSA)在无机草酸钙(CaOx)一水合物(COM)晶体和尿草酸钙晶体中的晶内分布,并确定PTF1的结合是否可以通过特定γ-羧基谷氨酸(Gla)残基与COM晶体单个面的原子阵列之间的相互作用来解释。材料与方法:从含有不同相对浓度荧光HSA或PTF1的无机溶液和超滤尿液中沉淀COM晶体,并用荧光显微镜检查。使用Accelrys Materials Studio和Discovery Studio对PTF1与COM晶体的顶面、侧面和顶面的结合进行建模。

结果

单独的PTF1总是主要吸附在COM晶体的顶面上,而HSA在无机条件下主要结合在侧面,但在尿液中结合在顶面上。在彼此存在的情况下,两种蛋白质竞争吸附到顶面上,PTF1的附着比HSA占优势。建模表明,尿PTF1对所有三个COM表面具有相同的理论结合潜力。

结论

(i)HSA和PTF1在尿液和无机COM晶体中的各向异性包合是由于它们优先结合到特定的COM面上;(ii)HSA在无机和尿液条件下的结合偏好不同;(iii)PTF1优先结合到COM晶体顶面上的情况比Gla基团与表面原子阵列之间的相互作用所解释的更为复杂;(iv)未来关于尿蛋白与结石矿物晶体表面相互作用的研究应在尿液中进行。

相似文献

1
2
Inhibition of growth and aggregation of calcium oxalate crystals in vitro--a comparison of four human proteins.
Eur J Biochem. 1998 May 1;253(3):637-44. doi: 10.1046/j.1432-1327.1998.2530637.x.
5
7
Intracrystalline urinary proteins facilitate degradation and dissolution of calcium oxalate crystals in cultured renal cells.
Am J Physiol Renal Physiol. 2008 Feb;294(2):F355-61. doi: 10.1152/ajprenal.00529.2007. Epub 2007 Dec 12.
8
Face-specific incorporation of osteopontin into urinary and inorganic calcium oxalate monohydrate and dihydrate crystals.
Urol Res. 2010 Oct;38(5):357-76. doi: 10.1007/s00240-010-0300-7. Epub 2010 Jul 22.
9

引用本文的文献

2
Advances in the mechanism of urinary proteins in calcium oxalate kidney stone formation.
Urolithiasis. 2025 Feb 11;53(1):27. doi: 10.1007/s00240-025-01703-6.
3
A Short Review on the Relationships Between Nephrolithiasis and Myocardial Infarction.
Galen Med J. 2019 Jun 2;8:e1289. doi: 10.31661/gmj.v8i0.1289. eCollection 2019.
8
From crystalluria to kidney stones, some physicochemical aspects of calcium nephrolithiasis.
World J Nephrol. 2014 Nov 6;3(4):256-67. doi: 10.5527/wjn.v3.i4.256.
9
Alteration of urinary macromolecules by adsorption on surfaces, probably an important factor in urolithiasis.
Urolithiasis. 2013 Nov;41(6):467-74. doi: 10.1007/s00240-013-0604-5. Epub 2013 Sep 14.
10
Face-specific incorporation of osteopontin into urinary and inorganic calcium oxalate monohydrate and dihydrate crystals.
Urol Res. 2010 Oct;38(5):357-76. doi: 10.1007/s00240-010-0300-7. Epub 2010 Jul 22.

本文引用的文献

2
Control of calcium oxalate crystal growth by face-specific adsorption of an osteopontin phosphopeptide.
J Am Chem Soc. 2007 Dec 5;129(48):14946-51. doi: 10.1021/ja0745613. Epub 2007 Nov 10.
3
Specific adsorption of osteopontin and synthetic polypeptides to calcium oxalate monohydrate crystals.
Biophys J. 2007 Sep 1;93(5):1768-77. doi: 10.1529/biophysj.106.101881. Epub 2007 May 11.
4
Models for protein binding to calcium oxalate surfaces.
Urol Res. 2007 Apr;35(2):63-71. doi: 10.1007/s00240-007-0087-3. Epub 2007 Mar 20.
6
Molecular modulation of calcium oxalate crystallization.
Am J Physiol Renal Physiol. 2006 Dec;291(6):F1123-31. doi: 10.1152/ajprenal.00136.2006.
9
Adhesion at calcium oxalate crystal surfaces and the effect of urinary constituents.
Proc Natl Acad Sci U S A. 2005 Jan 11;102(2):267-72. doi: 10.1073/pnas.0406835101. Epub 2004 Dec 29.
10
Materials science. Shaping crystals with biomolecules.
Science. 2004 Nov 19;306(5700):1301-2. doi: 10.1126/science.1100889.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验