Balibar Carl J, Shen Xiaoyu, Tao Jianshi
Department of Infectious Diseases, Novartis Institutes for BioMedical Research, 500 Technology Square, Cambridge, MA 02139, USA.
J Bacteriol. 2009 Feb;191(3):851-61. doi: 10.1128/JB.01357-08. Epub 2008 Nov 21.
Isoprenoids are a class of ubiquitous organic molecules synthesized from the five-carbon starter unit isopentenyl pyrophosphate (IPP). Comprising more than 30,000 known natural products, isoprenoids serve various important biological functions in many organisms. In bacteria, undecaprenyl pyrophosphate is absolutely required for the formation of cell wall peptidoglycan and other cell surface structures, while ubiquinones and menaquinones, both containing an essential prenyl moiety, are key electron carriers in respiratory energy generation. There is scant knowledge on the nature and regulation of bacterial isoprenoid pathways. In order to explore the cellular responses to perturbations in the mevalonate pathway, responsible for producing the isoprenoid precursor IPP in many gram-positive bacteria and eukaryotes, we constructed three strains of Staphylococcus aureus in which each of the mevalonate pathway genes is regulated by an IPTG (isopropyl-beta-D-thiogalactopyranoside)-inducible promoter. We used DNA microarrays to profile the transcriptional effects of downregulating the components of the mevalonate pathway in S. aureus and demonstrate that decreased expression of the mevalonate pathway leads to widespread downregulation of primary metabolism genes, an upregulation in virulence factors and cell wall biosynthetic determinants, and surprisingly little compensatory expression in other isoprenoid biosynthetic genes. We subsequently correlate these transcriptional changes with downstream metabolic consequences.
类异戊二烯是一类普遍存在的有机分子,由五碳起始单元异戊烯基焦磷酸(IPP)合成。类异戊二烯包含30000多种已知的天然产物,在许多生物体中发挥着各种重要的生物学功能。在细菌中,十一异戊烯基焦磷酸是细胞壁肽聚糖和其他细胞表面结构形成所绝对必需的,而都含有一个必需异戊二烯基部分的泛醌和甲基萘醌是呼吸能量产生中的关键电子载体。关于细菌类异戊二烯途径的性质和调控知之甚少。为了探索细胞对甲羟戊酸途径扰动的反应,甲羟戊酸途径在许多革兰氏阳性细菌和真核生物中负责产生类异戊二烯前体IPP,我们构建了三株金黄色葡萄球菌菌株,其中甲羟戊酸途径的每个基因都由IPTG(异丙基-β-D-硫代半乳糖苷)诱导型启动子调控。我们使用DNA微阵列来分析下调金黄色葡萄球菌中甲羟戊酸途径成分的转录效应,并证明甲羟戊酸途径表达的降低导致初级代谢基因广泛下调、毒力因子和细胞壁生物合成决定因素上调,并且在其他类异戊二烯生物合成基因中补偿性表达很少。我们随后将这些转录变化与下游代谢后果相关联。