Dressel M, Gompf B, Faltermeier D, Tripathi A K, Pflaum J, Schubert M
Physikalisches Institut, Universität Stuttgart, Pfaffenwaldring 57, 70550 Stuttgart, Germany.
Opt Express. 2008 Nov 24;16(24):19770-8. doi: 10.1364/oe.16.019770.
The Kramers-Kronig relations between the real and imaginary parts of a response function are widely used in solid-state physics to evaluate the corresponding quantity if only one component is measured. They are among the most fundamental statements since only based on the analytical behavior and causal nature of the material response [Phys. Rev. 104, 1760-1770 (1956)]. Optical losses, for instance, can be obtained from the dispersion of the dielectric constant at all wavelengths, and vice versa [Handbook of optical constants of solids, Vol. 1, p. 35]. Although the general validity was never casted into doubt, it is a longstanding problem that Kramers-Kronig relations cannot simply be applied to anisotropic crystalline materials because contributions from different directions mix in a frequency-dependent way. Here we present a general method to identify frequency-independent principal polarizability directions for which the Kramers-Kronig relations are obeyed even in materials with lowest symmetry. Using generalized spectroscopic ellipsometry on a single crystal surface of triclinic pentacene, as an example, enables us to evaluate the complex dielectric constant and to compare it with band-structure calculations along the crystallographic directions. A general recipe is provided how to proceed from a macroscopic measurement on a low symmetry crystal plane to the microscopic dielectric properties of the unit cell, along whose axes the Kramers-Kronig relations hold.
响应函数实部和虚部之间的克拉默斯-克勒尼希关系在固态物理学中被广泛用于在仅测量一个分量的情况下评估相应的量。它们是最基本的表述之一,因为它们仅基于材料响应的解析特性和因果性质[《物理评论》104,1760 - 1770(1956)]。例如,光学损耗可以从所有波长下的介电常数色散中获得,反之亦然[《固体光学常数手册》,第1卷,第35页]。尽管其普遍有效性从未受到质疑,但长期存在的一个问题是,克拉默斯-克勒尼希关系不能简单地应用于各向异性晶体材料,因为来自不同方向的贡献会以频率依赖的方式混合。在此,我们提出一种通用方法,用于识别与频率无关的主极化率方向,即使在对称性最低的材料中,这些方向也服从克拉默斯-克勒尼希关系。以在三斜晶系并五苯单晶表面上使用广义光谱椭偏仪为例,这使我们能够评估复介电常数,并将其与沿晶体学方向的能带结构计算结果进行比较。本文提供了一个通用方法,说明如何从在低对称晶面上的宏观测量过渡到晶胞的微观介电性质,沿着其轴克拉默斯-克勒尼希关系成立。