Slavich Aleksandr S, Ermolaev Georgy A, Tatmyshevskiy Mikhail K, Toksumakov Adilet N, Matveeva Olga G, Grudinin Dmitriy V, Voronin Kirill V, Mazitov Arslan, Kravtsov Konstantin V, Syuy Alexander V, Tsymbarenko Dmitry M, Mironov Mikhail S, Novikov Sergey M, Kruglov Ivan, Ghazaryan Davit A, Vyshnevyy Andrey A, Arsenin Aleksey V, Volkov Valentyn S, Novoselov Kostya S
Moscow Center for Advanced Studies, Kulakova str. 20, Moscow, 123592, Russia.
Emerging Technologies Research Center, XPANCEO, Internet City, Emmay Tower, Dubai, United Arab Emirates.
Light Sci Appl. 2024 Mar 8;13(1):68. doi: 10.1038/s41377-024-01407-3.
The emergence of van der Waals (vdW) materials resulted in the discovery of their high optical, mechanical, and electronic anisotropic properties, immediately enabling countless novel phenomena and applications. Such success inspired an intensive search for the highest possible anisotropic properties among vdW materials. Furthermore, the identification of the most promising among the huge family of vdW materials is a challenging quest requiring innovative approaches. Here, we suggest an easy-to-use method for such a survey based on the crystallographic geometrical perspective of vdW materials followed by their optical characterization. Using our approach, we found AsS as a highly anisotropic vdW material. It demonstrates high in-plane optical anisotropy that is ~20% larger than for rutile and over two times as large as calcite, high refractive index, and transparency in the visible range, overcoming the century-long record set by rutile. Given these benefits, AsS opens a pathway towards next-generation nanophotonics as demonstrated by an ultrathin true zero-order quarter-wave plate that combines classical and the Fabry-Pérot optical phase accumulations. Hence, our approach provides an effective and easy-to-use method to find vdW materials with the utmost anisotropic properties.
范德华(vdW)材料的出现,使得人们发现了它们具有高光学、机械和电子各向异性特性,这立刻催生了无数新颖的现象和应用。这一成功激发了人们对范德华材料中尽可能高的各向异性特性的密集探索。此外,在庞大的范德华材料家族中识别出最有前景的材料是一项具有挑战性的任务,需要创新方法。在此,我们基于范德华材料的晶体学几何视角并结合其光学表征,提出一种便于此类研究的方法。通过我们的方法,我们发现AsS是一种高度各向异性的范德华材料。它展现出高面内光学各向异性,比金红石大~20%,是方解石的两倍多,具有高折射率以及在可见光范围内的透明度,打破了金红石保持了一个世纪之久的记录。鉴于这些优点,AsS为下一代纳米光子学开辟了一条道路,如一个结合了经典光学相位积累和法布里 - 珀罗光学相位积累的超薄真零阶四分之一波片所展示的那样。因此,我们的方法提供了一种有效且易于使用的方式来寻找具有最大各向异性特性的范德华材料。