Suppr超能文献

改进穷人的克喇末-克龙尼格分析和克喇末-克龙尼格约束变分分析。

Improving Poor Man's Kramers-Kronig analysis and Kramers-Kronig constrained variational analysis.

机构信息

Leibniz Institute of Photonic Technology (IPHT), Albert-Einstein-Str. 9, D-07745 Jena, Germany; Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Helmholtzweg 4, D-07743 Jena, Germany.

Leibniz Institute of Photonic Technology (IPHT), Albert-Einstein-Str. 9, D-07745 Jena, Germany; Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Helmholtzweg 4, D-07743 Jena, Germany.

出版信息

Spectrochim Acta A Mol Biomol Spectrosc. 2019 Apr 15;213:391-396. doi: 10.1016/j.saa.2019.01.084. Epub 2019 Jan 29.

Abstract

We report a considerable improvement of Poor Man's Kramers-Kronig analysis and Kramers-Kronig constrained variational analysis. Whereas the first method is an alternative to the well-established conventional Kramers-Kronig analysis, but fully analytical, the second method allows to capture subtle spectral features that might get lost by conventional dispersion analysis using oscillator models. Since both methods share the same physical foundation, an improvement in the Kramers-Kronig conformity will be a benefit for either. The corresponding improvement that we report decreases the average errors and increases conformity by about three orders of magnitude. This puts Poor Man's Kramers-Kronig analysis in the range of Maclaurin's method, which is still one of the numerical benchmarks. Kramers-Kronig constrained variational analysis on the other hand can now unleash its full potential and is able to correctly model even spectra of inorganic materials with their strong absorption bands without being supported by conventional oscillators.

摘要

我们报告了 Poor Man's Kramers-Kronig 分析和 Kramers-Kronig 约束变分分析的显著改进。虽然第一种方法是对成熟的传统 Kramers-Kronig 分析的替代方法,但它是完全解析的,而第二种方法则可以捕捉到传统的色散分析可能会丢失的细微光谱特征,因为这两种方法都基于相同的物理基础,所以 Kramers-Kronig 一致性的改进对任何一种方法都有好处。我们报告的相应改进降低了平均误差并将一致性提高了约三个数量级。这使得 Poor Man's Kramers-Kronig 分析达到了 Maclaurin 方法的水平,Maclaurin 方法仍然是数值基准之一。另一方面,Kramers-Kronig 约束变分分析现在可以充分发挥其潜力,即使是具有强吸收带的无机材料的光谱也可以正确建模,而无需传统振荡器的支持。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验