Braiterman Lelita, Nyasae Lydia, Guo Yan, Bustos Rodrigo, Lutsenko Svetlana, Hubbard Ann
Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
Am J Physiol Gastrointest Liver Physiol. 2009 Feb;296(2):G433-44. doi: 10.1152/ajpgi.90489.2008. Epub 2008 Nov 25.
ATP7B is a copper-transporting P-type ATPase present predominantly in liver. In basal copper, hepatic ATP7B is in a post-trans-Golgi network (TGN) compartment where it loads cytoplasmic Cu(I) onto newly synthesized ceruloplasmin. When copper levels rise, the protein redistributes via unique vesicles to the apical periphery where it exports intracellular Cu(I) into bile. We want to understand the mechanisms regulating the copper-sensitive trafficking of ATP7B. Earlier, our laboratory reported the presence of apical targeting/TGN retention information within residues 1-63 of human ATP7B; deletion of these residues resulted in a mutant protein that was not efficiently retained in the post-TGN in low copper and constitutively trafficked to the basolateral membrane of polarized, hepatic WIF-B cells with and without copper (13). In this study, we used mutagenesis and adenovirus infection of WIF-B cells followed by confocal immunofluorescence microscopy analysis to identify the precise retention/targeting sequences in the context of full-length ATP7B. We also analyzed the expression of selected mutants in livers of copper-deficient and -loaded mice. Our combined results clearly demonstrate that nine amino acids, F(37)AFDNVGYE(45), comprise an essential apical targeting determinant for ATP7B in elevated copper and participate in the TGN retention of the protein under low-copper conditions. The signal is novel, does not require phosphorylation, and is highly conserved in approximately 24 species of ATP7B. Furthermore, N41S, which is part of the signal we identified, is the first and only Wilson disease-causing missense mutation in residues 1-63 of ATP7B. Expression of N41S-ATP7B in WIF-B cells severely disabled the targeting and retention of the protein. We present a working model of how this physiologically relevant signal might work.
ATP7B是一种主要存在于肝脏中的铜转运P型ATP酶。在基础铜水平时,肝脏中的ATP7B位于高尔基体后网络(TGN)区室,在那里它将细胞质中的Cu(I)加载到新合成的铜蓝蛋白上。当铜水平升高时,该蛋白通过独特的囊泡重新分布到顶端周边,在那里它将细胞内的Cu(I)分泌到胆汁中。我们想要了解调节ATP7B铜敏感转运的机制。早些时候,我们实验室报道了人ATP7B第1至63位残基内存在顶端靶向/TGN保留信息;删除这些残基会导致一种突变蛋白,该蛋白在低铜条件下不能有效地保留在TGN后,并且在有铜和无铜的情况下都持续转运到极化的肝脏WIF-B细胞的基底外侧膜(13)。在这项研究中,我们对WIF-B细胞进行诱变和腺病毒感染,然后通过共聚焦免疫荧光显微镜分析来确定全长ATP7B背景下精确的保留/靶向序列。我们还分析了所选突变体在缺铜和富铜小鼠肝脏中的表达。我们的综合结果清楚地表明,九个氨基酸F(37)AFDNVGYE(45)构成了铜水平升高时ATP7B的一个必需的顶端靶向决定因素,并在低铜条件下参与该蛋白在TGN的保留。该信号是新发现的,不需要磷酸化,并且在大约24种ATP7B中高度保守。此外,我们鉴定出的信号中的一部分N41S是ATP7B第1至63位残基中首个也是唯一导致威尔逊病的错义突变。N41S-ATP7B在WIF-B细胞中的表达严重破坏了该蛋白的靶向和保留。我们提出了一个关于这个生理相关信号可能如何起作用的工作模型。