Suppr超能文献

肿瘤抑制与癌症治疗中的DNA损伤反应途径。

DNA damage response pathways in tumor suppression and cancer treatment.

作者信息

Liang Yulong, Lin Shiaw-Yih, Brunicardi F Charles, Goss John, Li Kaiyi

机构信息

The Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Feigin Center, FC830.29, MC-FC850, 1102 Bates Avenue, Houston, TX 77030, USA.

出版信息

World J Surg. 2009 Apr;33(4):661-6. doi: 10.1007/s00268-008-9840-1.

Abstract

Mammalian cells are frequently at risk of DNA damage from multiple sources. Accordingly, cells have evolved the DNA damage response (DDR) pathways to monitor the integrity of their genome. Conceptually, DDR pathways contain three major components (some with overlapping functions): sensors, signal transducers, and effectors. At the level of sensors, ATM (ataxia telangiectasia mutated) and ATR (ATM-Rad3-related) are proximal kinases that act as the core sensors of and are central to the entire DDR. These two kinases function to detect various forms of damaged DNA and trigger DNA damage response cascades. If cells harbor DDR defects and fail to repair the damaged DNA, it would cause genomic instability and, as a result, lead to cellular transformation. Indeed, deficiencies of DDR frequently occur in human cancers. Interestingly, this property of cancer also provides a great opportunity for cancer therapy. For example, by using a synthetic lethality model to search for the effective drugs, ChK1 inhibitors have been shown to selectively target the tumor cells with p53 mutations. In addition, the inhibitors of poly(ADP-ribose) polymerase (PARP-1) showed selectively killing effects on the cells with defects of homologous recombination (HR), particularly in the context of BRCA1/2 mutations. Since Brit1 is a key regulator in DDR and HR repair, we believe that we can develop a similar strategy to target cancers with Brit1 deficiency. Currently, we are conducting a high-throughput screening to identify novel compounds that specifically target the Brit1-deficient cancer which will lead to development of effective personalized drugs to cure cancer in clinic.

摘要

哺乳动物细胞经常面临来自多种来源的DNA损伤风险。因此,细胞进化出了DNA损伤反应(DDR)途径来监测其基因组的完整性。从概念上讲,DDR途径包含三个主要成分(有些功能重叠):传感器、信号转导器和效应器。在传感器层面,ATM(共济失调毛细血管扩张症突变基因)和ATR(ATM-Rad3相关基因)是近端激酶,它们作为整个DDR的核心传感器并处于中心地位。这两种激酶的功能是检测各种形式的受损DNA并触发DNA损伤反应级联。如果细胞存在DDR缺陷且无法修复受损DNA,就会导致基因组不稳定,进而导致细胞转化。事实上,DDR缺陷在人类癌症中经常出现。有趣的是,癌症的这一特性也为癌症治疗提供了一个绝佳机会。例如,通过使用合成致死模型来寻找有效药物,ChK1抑制剂已被证明能选择性地靶向具有p53突变的肿瘤细胞。此外,聚(ADP-核糖)聚合酶(PARP-1)抑制剂对具有同源重组(HR)缺陷的细胞表现出选择性杀伤作用,特别是在BRCA1/2突变的情况下。由于Brit1是DDR和HR修复中的关键调节因子,我们相信我们可以开发一种类似的策略来靶向缺乏Brit1的癌症。目前,我们正在进行高通量筛选,以鉴定特异性靶向缺乏Brit1的癌症的新型化合物,这将导致开发有效的个性化药物用于临床治疗癌症。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验