Sarholz Barbara, Piepho Hans-Peter
General Motors Powertrain Germany GmbH, Rüsselsheim, Germany.
Biom J. 2008 Dec;50(6):927-39. doi: 10.1002/bimj.200810476.
Microarrays provide a valuable tool for the quantification of gene expression. Usually, however, there is a limited number of replicates leading to unsatisfying variance estimates in a gene-wise mixed model analysis. As thousands of genes are available, it is desirable to combine information across genes. When more than two tissue types or treatments are to be compared it might be advisable to consider the array effect as random. Then information between arrays may be recovered, which can increase accuracy in estimation. We propose a method of variance component estimation across genes for a linear mixed model with two random effects. The method may be extended to models with more than two random effects. We assume that the variance components follow a log-normal distribution. Assuming that the sums of squares from the gene-wise analysis, given the true variance components, follow a scaled chi(2)-distribution, we adopt an empirical Bayes approach. The variance components are estimated by the expectation of their posterior distribution. The new method is evaluated in a simulation study. Differentially expressed genes are more likely to be detected by tests based on these variance estimates than by tests based on gene-wise variance estimates. This effect is most visible in studies with small array numbers. Analyzing a real data set on maize endosperm the method is shown to work well.
微阵列提供了一种用于基因表达定量的宝贵工具。然而,通常重复样本数量有限,导致在基因水平的混合模型分析中方差估计不尽人意。由于有成千上万的基因可供研究,因此希望整合不同基因间的信息。当要比较两种以上的组织类型或处理方式时,将阵列效应视为随机效应可能是明智的。这样可以恢复阵列之间的信息,从而提高估计的准确性。我们提出了一种针对具有两个随机效应的线性混合模型跨基因估计方差分量的方法。该方法可以扩展到具有两个以上随机效应的模型。我们假设方差分量服从对数正态分布。假设在给定真实方差分量的情况下,基因水平分析的平方和服从尺度化的卡方分布,我们采用经验贝叶斯方法。方差分量通过其后验分布的期望来估计。在模拟研究中对新方法进行了评估。与基于基因水平方差估计的检验相比,基于这些方差估计的检验更有可能检测到差异表达基因。这种效应在阵列数量较少的研究中最为明显。在分析玉米胚乳的真实数据集时,该方法表现良好。