Suppr超能文献

使用小波相关性检测和表征事件序列中的动态异质性。

Detection and characterization of dynamical heterogeneity in an event series using wavelet correlation.

作者信息

Yang Haw

机构信息

Department of Chemistry, University of California at Berkeley, Berkeley, California 94720, USA.

出版信息

J Chem Phys. 2008 Aug 21;129(7):074701. doi: 10.1063/1.2969074.

Abstract

A method that combines wavelet-based multiscale decomposition with correlation statistical analysis to extract, detect, and characterize time-dependent variations in the spectral response of a system has been developed. The approach is independent of the distribution of the observable and does not rely on any presumed kinetic model for the system's dynamical response. It provides a quantitative and objective framework for studies of complex systems exhibiting dynamics that are nonuniform in time. Applying this method to computer simulated data, it is shown that the wavelet correlation approach is capable of resolving the size fluctuations in a single nanostructure by single-molecule tracking spectroscopy.

摘要

一种将基于小波的多尺度分解与相关统计分析相结合的方法已经被开发出来,用于提取、检测和表征系统光谱响应中随时间变化的情况。该方法独立于可观测值的分布,并且不依赖于系统动态响应的任何假定动力学模型。它为研究表现出时间上非均匀动力学的复杂系统提供了一个定量和客观的框架。将该方法应用于计算机模拟数据,结果表明小波相关方法能够通过单分子跟踪光谱法解析单个纳米结构中的尺寸波动。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验