Suppr超能文献

使用频率轨迹提取算法自动识别谐波鸟鸣声。

Automatic recognition of harmonic bird sounds using a frequency track extraction algorithm.

作者信息

Heller Jason R, Pinezich John D

机构信息

Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, New York 11794-3600, USA.

出版信息

J Acoust Soc Am. 2008 Sep;124(3):1830-7. doi: 10.1121/1.2950085.

Abstract

This paper demonstrates automatic recognition of vocalizations of four common bird species (herring gull [Larus argentatus], blue jay [Cyanocitta cristata], Canada goose [Branta canadensis], and American crow [Corvus brachyrhynchos]) using an algorithm that extracts frequency track sets using track properties of importance and harmonic correlation. The main result is that a complex harmonic vocalization is rendered into a set of related tracks that is easily applied to statistical models of the actual bird vocalizations. For each vocalization type, a statistical model of the vocalization was created by transforming the training set frequency tracks into feature vectors. The extraction algorithm extracts sets of frequency tracks from test recordings that closely approximate harmonic sounds in the file being processed. Each extracted set in its final form is then compared with the statistical models generated during the training phase using Mahalanobis distance functions. If it matches one of the models closely, the recognizer declares the set an occurrence of the corresponding vocalization. The method was evaluated against a test set containing vocalizations of both the 4 target species and 16 additional species as well as background noise containing planes, cars, and various natural sounds.

摘要

本文展示了利用一种算法对四种常见鸟类(银鸥[Larus argentatus]、冠蓝鸦[Cyanocitta cristata]、加拿大黑雁[Branta canadensis]和美洲鸦[Corvus brachyrhynchos])的叫声进行自动识别。该算法利用重要的音轨属性和谐波相关性来提取频率音轨集。主要成果是,复杂的谐波叫声被转化为一组相关音轨,可轻松应用于实际鸟类叫声的统计模型。对于每种叫声类型,通过将训练集频率音轨转换为特征向量,创建了叫声的统计模型。提取算法从测试录音中提取频率音轨集,这些音轨与正在处理的文件中的谐波声音非常接近。然后,使用马氏距离函数将每个最终形式的提取集与训练阶段生成的统计模型进行比较。如果它与其中一个模型紧密匹配,识别器就会判定该集为相应叫声的一次出现。该方法针对一个测试集进行了评估,该测试集包含4种目标物种和另外16种物种的叫声,以及包含飞机、汽车和各种自然声音的背景噪声。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验