Suppr超能文献

多同时鸟类的声学分类:一种多实例多标签方法。

Acoustic classification of multiple simultaneous bird species: a multi-instance multi-label approach.

机构信息

Department of Electrical Engineering & Computer Science, Oregon State University, Corvallis, Oregon 97331, USA.

出版信息

J Acoust Soc Am. 2012 Jun;131(6):4640-50. doi: 10.1121/1.4707424.

Abstract

Although field-collected recordings typically contain multiple simultaneously vocalizing birds of different species, acoustic species classification in this setting has received little study so far. This work formulates the problem of classifying the set of species present in an audio recording using the multi-instance multi-label (MIML) framework for machine learning, and proposes a MIML bag generator for audio, i.e., an algorithm which transforms an input audio signal into a bag-of-instances representation suitable for use with MIML classifiers. The proposed representation uses a 2D time-frequency segmentation of the audio signal, which can separate bird sounds that overlap in time. Experiments using audio data containing 13 species collected with unattended omnidirectional microphones in the H. J. Andrews Experimental Forest demonstrate that the proposed methods achieve high accuracy (96.1% true positives/negatives). Automated detection of bird species occurrence using MIML has many potential applications, particularly in long-term monitoring of remote sites, species distribution modeling, and conservation planning.

摘要

尽管野外采集的录音通常包含多个同时发声的不同物种的鸟类,但到目前为止,这种环境中的声学物种分类研究还很少。这项工作使用机器学习的多实例多标签 (MIML) 框架来解决在音频记录中对存在的物种进行分类的问题,并提出了一种用于音频的 MIML 袋生成器,即一种将输入音频信号转换为适合 MIML 分类器使用的实例袋表示的算法。所提出的表示形式使用音频信号的 2D 时频分段,可分离时间上重叠的鸟类声音。使用在 H. J. Andrews 实验森林中使用无人值守全向麦克风采集的包含 13 个物种的音频数据进行的实验表明,所提出的方法实现了很高的准确性(96.1% 的真阳性/阴性)。使用 MIML 自动检测鸟类物种的出现有许多潜在的应用,特别是在远程站点的长期监测、物种分布建模和保护规划中。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验