Beare Paul A, Unsworth Nathan, Andoh Masako, Voth Daniel E, Omsland Anders, Gilk Stacey D, Williams Kelly P, Sobral Bruno W, Kupko John J, Porcella Stephen F, Samuel James E, Heinzen Robert A
Coxiella Pathogenesis Section, Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, 903 S. 4th Street, Hamilton, MT 59840, USA.
Infect Immun. 2009 Feb;77(2):642-56. doi: 10.1128/IAI.01141-08. Epub 2008 Dec 1.
Genetically distinct isolates of Coxiella burnetii, the cause of human Q fever, display different phenotypes with respect to in vitro infectivity/cytopathology and pathogenicity for laboratory animals. Moreover, correlations between C. burnetii genomic groups and human disease presentation (acute versus chronic) have been described, suggesting that isolates have distinct virulence characteristics. To provide a more-complete understanding of C. burnetii's genetic diversity, evolution, and pathogenic potential, we deciphered the whole-genome sequences of the K (Q154) and G (Q212) human chronic endocarditis isolates and the naturally attenuated Dugway (5J108-111) rodent isolate. Cross-genome comparisons that included the previously sequenced Nine Mile (NM) reference isolate (RSA493) revealed both novel gene content and disparate collections of pseudogenes that may contribute to isolate virulence and other phenotypes. While C. burnetii genomes are highly syntenous, recombination between abundant insertion sequence (IS) elements has resulted in genome plasticity manifested as chromosomal rearrangement of syntenic blocks and DNA insertions/deletions. The numerous IS elements, genomic rearrangements, and pseudogenes of C. burnetii isolates are consistent with genome structures of other bacterial pathogens that have recently emerged from nonpathogens with expanded niches. The observation that the attenuated Dugway isolate has the largest genome with the fewest pseudogenes and IS elements suggests that this isolate's lineage is at an earlier stage of pathoadaptation than the NM, K, and G lineages.
作为人类Q热病原体的伯纳特柯克斯体(Coxiella burnetii)的遗传不同分离株,在体外感染性/细胞病理学以及对实验动物的致病性方面表现出不同的表型。此外,已有研究描述了伯纳特柯克斯体基因组群与人类疾病表现(急性与慢性)之间的相关性,这表明分离株具有不同的毒力特征。为了更全面地了解伯纳特柯克斯体的遗传多样性、进化和致病潜力,我们解析了K(Q154)和G(Q212)人类慢性心内膜炎分离株以及自然减毒的达格威(Dugway)(5J108 - 111)啮齿动物分离株的全基因组序列。包括先前测序的九里(NM)参考分离株(RSA493)在内的跨基因组比较揭示了可能有助于分离株毒力和其他表型的新基因内容和不同的假基因集合。虽然伯纳特柯克斯体基因组具有高度共线性,但丰富的插入序列(IS)元件之间的重组导致了基因组可塑性,表现为共线区的染色体重排和DNA插入/缺失。伯纳特柯克斯体分离株中大量的IS元件、基因组重排和假基因与其他细菌病原体的基因组结构一致,这些病原体最近从不具有扩展生态位的非病原体中演化而来。减毒的达格威分离株具有最大的基因组、最少的假基因和IS元件,这一观察结果表明,该分离株的谱系在致病适应方面比NM、K和G谱系处于更早的阶段。