Woolrich Mark W, Jbabdi Saad, Patenaude Brian, Chappell Michael, Makni Salima, Behrens Timothy, Beckmann Christian, Jenkinson Mark, Smith Stephen M
University of Oxford Centre for Functional MRI of the Brain, UK.
Neuroimage. 2009 Mar;45(1 Suppl):S173-86. doi: 10.1016/j.neuroimage.2008.10.055. Epub 2008 Nov 13.
Typically in neuroimaging we are looking to extract some pertinent information from imperfect, noisy images of the brain. This might be the inference of percent changes in blood flow in perfusion FMRI data, segmentation of subcortical structures from structural MRI, or inference of the probability of an anatomical connection between an area of cortex and a subthalamic nucleus using diffusion MRI. In this article we will describe how Bayesian techniques have made a significant impact in tackling problems such as these, particularly in regards to the analysis tools in the FMRIB Software Library (FSL). We shall see how Bayes provides a framework within which we can attempt to infer on models of neuroimaging data, while allowing us to incorporate our prior belief about the brain and the neuroimaging equipment in the form of biophysically informed or regularising priors. It allows us to extract probabilistic information from the data, and to probabilistically combine information from multiple modalities. Bayes can also be used to not only compare and select between models of different complexity, but also to infer on data using committees of models. Finally, we mention some analysis scenarios where Bayesian methods are impractical, and briefly discuss some practical approaches that we have taken in these cases.
在神经成像中,我们通常希望从大脑的不完美、有噪声的图像中提取一些相关信息。这可能是从灌注功能磁共振成像(fMRI)数据中推断血流的百分比变化,从结构磁共振成像(MRI)中分割皮层下结构,或者使用扩散磁共振成像推断皮层区域与丘脑底核之间解剖连接的概率。在本文中,我们将描述贝叶斯技术如何在解决此类问题方面产生了重大影响,特别是在牛津大学功能磁共振成像脑研究中心软件库(FSL)的分析工具方面。我们将看到贝叶斯如何提供一个框架,在这个框架内我们可以尝试对神经成像数据模型进行推断,同时允许我们以生物物理信息或正则化先验的形式纳入我们对大脑和神经成像设备的先验信念。它使我们能够从数据中提取概率信息,并概率性地组合来自多个模态的信息。贝叶斯不仅可以用于比较和选择不同复杂度的模型,还可以使用模型委员会对数据进行推断。最后,我们提到一些贝叶斯方法不实用的分析场景,并简要讨论我们在这些情况下采取的一些实际方法。