Suppr超能文献

来自两种假单胞菌和根癌农杆菌C58菌株的糖醛酸脱氢酶的克隆与特性分析

Cloning and characterization of uronate dehydrogenases from two pseudomonads and Agrobacterium tumefaciens strain C58.

作者信息

Yoon Sang-Hwal, Moon Tae Seok, Iranpour Pooya, Lanza Amanda M, Prather Kristala Jones

机构信息

Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, 02139, USA.

出版信息

J Bacteriol. 2009 Mar;191(5):1565-73. doi: 10.1128/JB.00586-08. Epub 2008 Dec 5.

Abstract

Uronate dehydrogenase has been cloned from Pseudomonas syringae pv. tomato strain DC3000, Pseudomonas putida KT2440, and Agrobacterium tumefaciens strain C58. The genes were identified by using a novel complementation assay employing an Escherichia coli mutant incapable of consuming glucuronate as the sole carbon source but capable of growth on glucarate. A shotgun library of P. syringae was screened in the mutant E. coli by growing transformed cells on minimal medium containing glucuronic acid. Colonies that survived were evaluated for uronate dehydrogenase, which is capable of converting glucuronic acid to glucaric acid. In this manner, a 0.8-kb open reading frame was identified and subsequently verified to be udh. Homologous enzymes in P. putida and A. tumefaciens were identified based on a similarity search of the sequenced genomes. Recombinant proteins from each of the three organisms expressed in E. coli were purified and characterized. For all three enzymes, the turnover number (k(cat)) with glucuronate as a substrate was higher than that with galacturonate; however, the Michaelis constant (K(m)) for galacturonate was lower than that for glucuronate. The A. tumefaciens enzyme was found to have the highest rate constant (k(cat) = 1.9 x 10(2) s(-1) on glucuronate), which was more than twofold higher than those of both of the pseudomonad enzymes.

摘要

已从丁香假单胞菌番茄致病变种DC3000、恶臭假单胞菌KT2440和根癌农杆菌C58菌株中克隆出葡萄糖醛酸脱氢酶。通过一种新的互补测定法鉴定了这些基因,该测定法使用一种不能以葡萄糖醛酸作为唯一碳源但能在葡萄糖二酸上生长的大肠杆菌突变体。通过在含有葡萄糖醛酸的基本培养基上培养转化细胞,对丁香假单胞菌的鸟枪法文库进行了筛选。对存活的菌落进行葡萄糖醛酸脱氢酶评估,该酶能够将葡萄糖醛酸转化为葡萄糖二酸。通过这种方式,鉴定出一个0.8 kb的开放阅读框,随后证实其为udh。基于对已测序基因组的相似性搜索,鉴定出恶臭假单胞菌和根癌农杆菌中的同源酶。对在大肠杆菌中表达的三种生物体中的每一种的重组蛋白进行了纯化和表征。对于所有三种酶,以葡萄糖醛酸为底物的转换数(k(cat))高于以半乳糖醛酸为底物的转换数;然而,半乳糖醛酸的米氏常数(K(m))低于葡萄糖醛酸的米氏常数。发现根癌农杆菌的酶具有最高的速率常数(在葡萄糖醛酸上k(cat) = 1.9 x 10(2) s(-1)),比两种假单胞菌酶的速率常数高出两倍多。

相似文献

1
Cloning and characterization of uronate dehydrogenases from two pseudomonads and Agrobacterium tumefaciens strain C58.
J Bacteriol. 2009 Mar;191(5):1565-73. doi: 10.1128/JB.00586-08. Epub 2008 Dec 5.
2
Characterization of uronate dehydrogenases catalysing the initial step in an oxidative pathway.
Microb Biotechnol. 2015 Jul;8(4):633-43. doi: 10.1111/1751-7915.12265. Epub 2015 Apr 17.
3
Production of glucaric acid from a synthetic pathway in recombinant Escherichia coli.
Appl Environ Microbiol. 2009 Feb;75(3):589-95. doi: 10.1128/AEM.00973-08. Epub 2008 Dec 5.
4
Biochemical characterization of uronate dehydrogenases from three Pseudomonads, Chromohalobacter salixigens, and Polaromonas naphthalenivorans.
Enzyme Microb Technol. 2015 Feb;69:62-8. doi: 10.1016/j.enzmictec.2014.12.008. Epub 2014 Dec 30.
5
Identification in Agrobacterium tumefaciens of the D-galacturonic acid dehydrogenase gene.
Appl Microbiol Biotechnol. 2010 Apr;86(3):901-9. doi: 10.1007/s00253-009-2333-9. Epub 2009 Nov 17.
6
Deepening TOL and TOU catabolic pathways of Pseudomonas sp. OX1: cloning, sequencing and characterization of the lower pathways.
Biochimie. 2013 Feb;95(2):241-50. doi: 10.1016/j.biochi.2012.09.018. Epub 2012 Sep 23.
8
Cloning and characterization of a bifunctional glycosyl hydrolase from an antagonistic Pseudomonas putida strain P3(4).
J Basic Microbiol. 2012 Jun;52(3):340-9. doi: 10.1002/jobm.201100232. Epub 2011 Sep 23.
9
Enzymatic assay of D-glucuronate using uronate dehydrogenase.
Anal Biochem. 2009 Sep 15;392(2):183-5. doi: 10.1016/j.ab.2009.05.032. Epub 2009 May 27.

引用本文的文献

1
Metabolic engineering for microbial production of sugar acids.
BMC Biotechnol. 2025 May 13;25(1):36. doi: 10.1186/s12896-025-00973-7.
2
Production of D-glucaric acid with phosphoglucose isomerase-deficient Saccharomyces cerevisiae.
Biotechnol Lett. 2024 Feb;46(1):69-83. doi: 10.1007/s10529-023-03443-2. Epub 2023 Dec 8.
3
Chemometrics and genome mining reveal an unprecedented family of sugar acid-containing fungal nonribosomal cyclodepsipeptides.
Proc Natl Acad Sci U S A. 2022 Aug 9;119(32):e2123379119. doi: 10.1073/pnas.2123379119. Epub 2022 Aug 1.
4
Transcription factor allosteric regulation through substrate coordination to zinc.
NAR Genom Bioinform. 2021 May 3;3(2):lqab033. doi: 10.1093/nargab/lqab033. eCollection 2021 Jun.
5
6
Engineering marine fungi for conversion of D-galacturonic acid to mucic acid.
Microb Cell Fact. 2020 Jul 31;19(1):156. doi: 10.1186/s12934-020-01411-3.
7
Novel Metabolic Pathways and Regulons for Hexuronate Utilization in Proteobacteria.
J Bacteriol. 2018 Dec 20;201(2). doi: 10.1128/JB.00431-18. Print 2019 Jan 15.
9
10
Application of Nonphosphorylative Metabolism as an Alternative for Utilization of Lignocellulosic Biomass.
Front Microbiol. 2017 Nov 23;8:2310. doi: 10.3389/fmicb.2017.02310. eCollection 2017.

本文引用的文献

1
Production of glucaric acid from a synthetic pathway in recombinant Escherichia coli.
Appl Environ Microbiol. 2009 Feb;75(3):589-95. doi: 10.1128/AEM.00973-08. Epub 2008 Dec 5.
2
myo-Inositol catabolism in Bacillus subtilis.
J Biol Chem. 2008 Apr 18;283(16):10415-24. doi: 10.1074/jbc.M708043200. Epub 2008 Feb 28.
3
Identification of a gene cluster enabling Lactobacillus casei BL23 to utilize myo-inositol.
Appl Environ Microbiol. 2007 Jun;73(12):3850-8. doi: 10.1128/AEM.00243-07. Epub 2007 Apr 20.
5
Comparative genomics of the KdgR regulon in Erwinia chrysanthemi 3937 and other gamma-proteobacteria.
Microbiology (Reading). 2004 Nov;150(Pt 11):3571-3590. doi: 10.1099/mic.0.27041-0.
6
Systematic mutagenesis of the Escherichia coli genome.
J Bacteriol. 2004 Aug;186(15):4921-30. doi: 10.1128/JB.186.15.4921-4930.2004.
8
Hexuronic dehydrogenase of Agrobacterium tumefaciens.
J Bacteriol. 1959 Nov;78(5):734-5. doi: 10.1128/jb.78.5.734-735.1959.
10
Uronate oxidation by phytopathogenic pseudomonads.
Nature. 1959 May 16;183(4672):1412-3. doi: 10.1038/1831412a0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验