Suppr超能文献

鉴定使干酪乳杆菌BL23能够利用肌醇的基因簇。

Identification of a gene cluster enabling Lactobacillus casei BL23 to utilize myo-inositol.

作者信息

Yebra María Jesús, Zúñiga Manuel, Beaufils Sophie, Pérez-Martínez Gaspar, Deutscher Josef, Monedero Vicente

机构信息

Laboratorio de Bacterias Lácticas y Probióticos, IATA-CSIC, P.O. Box 73, 46100 Burjassot, Valencia, Spain.

出版信息

Appl Environ Microbiol. 2007 Jun;73(12):3850-8. doi: 10.1128/AEM.00243-07. Epub 2007 Apr 20.

Abstract

Genome analysis of Lactobacillus casei BL23 revealed that, compared to L. casei ATCC 334, it carries a 12.8-kb DNA insertion containing genes involved in the catabolism of the cyclic polyol myo-inositol (MI). Indeed, L. casei ATCC 334 does not ferment MI, whereas strain BL23 is able to utilize this carbon source. The inserted DNA consists of an iolR gene encoding a DeoR family transcriptional repressor and a divergently transcribed iolTABCDG1G2EJK operon, encoding a complete MI catabolic pathway, in which the iolK gene probably codes for a malonate semialdehyde decarboxylase. The presence of iolK suggests that L. casei has two alternative pathways for the metabolism of malonic semialdehyde: (i) the classical MI catabolic pathway in which IolA (malonate semialdehyde dehydrogenase) catalyzes the formation of acetyl-coenzyme A from malonic semialdehyde and (ii) the conversion of malonic semialdehyde to acetaldehyde catalyzed by the product of iolK. The function of the iol genes was verified by the disruption of iolA, iolT, and iolD, which provided MI-negative strains. By contrast, the disruption of iolK resulted in a strain with no obvious defect in MI utilization. Transcriptional analyses conducted with different mutant strains showed that the iolTABCDG1G2EJK cluster is regulated by substrate-specific induction mediated by the inactivation of the transcriptional repressor IolR and by carbon catabolite repression mediated by the catabolite control protein A (CcpA). This is the first example of an operon for MI utilization in lactic acid bacteria and illustrates the versatility of carbohydrate utilization in L. casei BL23.

摘要

干酪乳杆菌BL23的基因组分析表明,与干酪乳杆菌ATCC 334相比,它携带一个12.8 kb的DNA插入片段,其中包含参与环状多元醇肌醇(MI)分解代谢的基因。事实上,干酪乳杆菌ATCC 334不能发酵MI,而BL23菌株能够利用这种碳源。插入的DNA由一个编码DeoR家族转录阻遏物的iolR基因和一个反向转录的iolTABCDG1G2EJK操纵子组成,该操纵子编码完整的MI分解代谢途径,其中iolK基因可能编码丙二酸半醛脱羧酶。iolK的存在表明干酪乳杆菌有两条丙二酸半醛代谢的替代途径:(i)经典的MI分解代谢途径,其中IolA(丙二酸半醛脱氢酶)催化丙二酸半醛形成乙酰辅酶A;(ii)由iolK产物催化丙二酸半醛转化为乙醛。通过破坏iolA、iolT和iolD验证了iol基因的功能,这些基因产生了MI阴性菌株。相比之下,iolK的破坏导致一株在MI利用方面没有明显缺陷的菌株。对不同突变株进行的转录分析表明,iolTABCDG1G2EJK基因簇受转录阻遏物IolR失活介导的底物特异性诱导和分解代谢物控制蛋白A(CcpA)介导的碳分解代谢阻遏调控。这是乳酸菌中第一个MI利用操纵子的例子,说明了干酪乳杆菌BL23碳水化合物利用的多样性。

相似文献

1
Identification of a gene cluster enabling Lactobacillus casei BL23 to utilize myo-inositol.
Appl Environ Microbiol. 2007 Jun;73(12):3850-8. doi: 10.1128/AEM.00243-07. Epub 2007 Apr 20.
3
The RpiR-like repressor IolR regulates inositol catabolism in Sinorhizobium meliloti.
J Bacteriol. 2011 Oct;193(19):5155-63. doi: 10.1128/JB.05371-11. Epub 2011 Jul 22.
4
myo-Inositol dehydrogenase and scyllo-inositol dehydrogenase from Lactobacillus casei BL23 bind their substrates in very different orientations.
Biochim Biophys Acta Proteins Proteom. 2018 Nov;1866(11):1115-1124. doi: 10.1016/j.bbapap.2018.08.011. Epub 2018 Aug 30.
5
Genetics of L-sorbose transport and metabolism in Lactobacillus casei.
J Bacteriol. 2000 Jan;182(1):155-63. doi: 10.1128/JB.182.1.155-163.2000.
6
Catabolite repression in Lactobacillus casei ATCC 393 is mediated by CcpA.
J Bacteriol. 1997 Nov;179(21):6657-64. doi: 10.1128/jb.179.21.6657-6664.1997.
7
Investigation of myo-inositol catabolism in Rhizobium leguminosarum bv. viciae and its effect on nodulation competitiveness.
Mol Plant Microbe Interact. 2001 Aug;14(8):1016-25. doi: 10.1094/MPMI.2001.14.8.1016.
9
PCR screening and sequence analysis of iol clusters in Lactobacillus casei strains isolated from koumiss.
Folia Microbiol (Praha). 2010 Nov;55(6):603-6. doi: 10.1007/s12223-010-0097-3. Epub 2011 Jan 21.
10
Lactobacillus casei ferments the N-Acetylglucosamine moiety of fucosyl-α-1,3-N-acetylglucosamine and excretes L-fucose.
Appl Environ Microbiol. 2012 Jul;78(13):4613-9. doi: 10.1128/AEM.00474-12. Epub 2012 Apr 27.

引用本文的文献

1
Integrating genomic evidence for an updated taxonomy of the bacterial genus Spiribacter.
Sci Rep. 2024 Dec 3;14(1):30057. doi: 10.1038/s41598-024-80127-5.
2
Phytate metabolism is mediated by microbial cross-feeding in the gut microbiota.
Nat Microbiol. 2024 Jul;9(7):1812-1827. doi: 10.1038/s41564-024-01698-7. Epub 2024 Jun 10.
3
Nitrosative stress under microaerobic conditions triggers inositol metabolism in Pseudomonas extremaustralis.
PLoS One. 2024 May 2;19(5):e0301252. doi: 10.1371/journal.pone.0301252. eCollection 2024.
5
Physiological, Biochemical, and Structural Bioinformatic Analysis of the Multiple Inositol Dehydrogenases from Corynebacterium glutamicum.
Microbiol Spectr. 2022 Oct 26;10(5):e0195022. doi: 10.1128/spectrum.01950-22. Epub 2022 Sep 12.
10
Natural and engineered promoters for gene expression in Lactobacillus species.
Appl Microbiol Biotechnol. 2020 May;104(9):3797-3805. doi: 10.1007/s00253-020-10426-0. Epub 2020 Mar 4.

本文引用的文献

1
How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria.
Microbiol Mol Biol Rev. 2006 Dec;70(4):939-1031. doi: 10.1128/MMBR.00024-06.
2
Identification of a functional 2-keto-myo-inositol dehydratase gene of Sinorhizobium fredii USDA191 required for myo-inositol utilization.
Biosci Biotechnol Biochem. 2006 Dec;70(12):2957-64. doi: 10.1271/bbb.60362. Epub 2006 Dec 7.
3
Comparative genomics of the lactic acid bacteria.
Proc Natl Acad Sci U S A. 2006 Oct 17;103(42):15611-6. doi: 10.1073/pnas.0607117103. Epub 2006 Oct 9.
7
Pleiotropic effects of lactate dehydrogenase inactivation in Lactobacillus casei.
Res Microbiol. 2005 Jun-Jul;156(5-6):641-9. doi: 10.1016/j.resmic.2005.02.011. Epub 2005 Apr 22.
8
Deltarho-web, an online tool to assess composition similarity of individual nucleic acid sequences.
Bioinformatics. 2005 Jul 1;21(13):3053-5. doi: 10.1093/bioinformatics/bti460. Epub 2005 Apr 26.
10
Organization and transcriptional regulation of myo-inositol operon in Clostridium perfringens.
FEMS Microbiol Lett. 2004 Jun 15;235(2):289-95. doi: 10.1016/j.femsle.2004.04.047.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验