Pope Scott D, Chen Li-Ling, Stewart Valley
Department of Microbiology, University of California, One Shields Ave., Davis, CA 95616-8665, USA.
J Bacteriol. 2009 Feb;191(3):1006-17. doi: 10.1128/JB.01281-08. Epub 2008 Dec 5.
The enterobacterium Klebsiella oxytoca uses a variety of inorganic and organic nitrogen sources, including purines, nitrogen-rich compounds that are widespread in the biosphere. We have identified a 23-gene cluster that encodes the enzymes for utilizing purines as the sole nitrogen source. Growth and complementation tests with insertion mutants, combined with sequence comparisons, reveal functions for the products of these genes. Here, we report our characterization of 12 genes, one encoding guanine deaminase and the others encoding enzymes for converting (hypo)xanthine to allantoate. Conventionally, xanthine dehydrogenase, a broadly distributed molybdoflavoenzyme, catalyzes sequential hydroxylation reactions to convert hypoxanthine via xanthine to urate. Our results show that these reactions in K. oxytoca are catalyzed by a two-component oxygenase (HpxE-HpxD enzyme) homologous to Rieske nonheme iron aromatic-ring-hydroxylating systems, such as phthalate dioxygenase. Our results also reveal previously undescribed enzymes involved in urate oxidation to allantoin, catalyzed by a flavoprotein monooxygenase (HpxO enzyme), and in allantoin conversion to allantoate, which involves allantoin racemase (HpxA enzyme). The pathway also includes the recently described PuuE allantoinase (HpxB enzyme). The HpxE-HpxD and HpxO enzymes were discovered independently by de la Riva et al. (L. de la Riva, J. Badia, J. Aguilar, R. A. Bender, and L. Baldoma, J. Bacteriol. 190:7892-7903, 2008). Thus, several enzymes in this K. oxytoca purine utilization pathway differ from those in other microorganisms. Isofunctional homologs of these enzymes apparently are encoded by other species, including Acinetobacter, Burkholderia, Pseudomonas, Saccharomyces, and Xanthomonas.
产酸克雷伯氏菌这种肠道细菌能利用多种无机和有机氮源,包括嘌呤,嘌呤是生物圈中广泛存在的富含氮的化合物。我们鉴定出一个由23个基因组成的基因簇,该基因簇编码利用嘌呤作为唯一氮源的酶。对插入突变体进行的生长和互补测试,结合序列比较,揭示了这些基因产物的功能。在此,我们报告对12个基因的特性分析,其中一个基因编码鸟嘌呤脱氨酶,其他基因编码将(次)黄嘌呤转化为尿囊酸的酶。传统上,黄嘌呤脱氢酶是一种广泛分布的钼黄素酶,催化连续的羟基化反应,将次黄嘌呤经黄嘌呤转化为尿酸。我们的结果表明,产酸克雷伯氏菌中的这些反应由一种与诸如邻苯二甲酸双加氧酶等里氏非血红素铁芳香环羟基化系统同源的双组分加氧酶(HpxE - HpxD酶)催化。我们的结果还揭示了参与尿酸氧化为尿囊素(由黄素蛋白单加氧酶(HpxO酶)催化)以及尿囊素转化为尿囊酸(涉及尿囊素消旋酶(HpxA酶))的先前未描述的酶。该途径还包括最近描述的PuuE尿囊素酶(HpxB酶)。HpxE - HpxD和HpxO酶是由德拉里瓦等人独立发现的(L. 德拉里瓦、J. 巴迪亚、J. 阿吉拉尔、R. A. 本德和L. 巴尔多米亚,《细菌学杂志》190:7892 - 7903,2008年)。因此,产酸克雷伯氏菌这种嘌呤利用途径中的几种酶与其他微生物中的不同。这些酶的同功能同源物显然由其他物种编码,包括不动杆菌属、伯克霍尔德菌属、假单胞菌属、酿酒酵母属和黄单胞菌属。