Grivennikova Vera G, Vinogradov Andrei D
Department of Biochemistry, Moscow State University, Moscow, Russian Federation.
Biochim Biophys Acta. 2013 Mar;1827(3):446-54. doi: 10.1016/j.bbabio.2013.01.002. Epub 2013 Jan 10.
Membrane-bound respiratory complex I in inside-out submitochondrial particles (SMP) catalyzes both superoxide and hydrogen peroxide formation in NADH- and/or succinate-supported reactions. At optimal NADH concentration (50μM), the complex I-mediated process results in a formation of two superoxide anions and H(2)O(2) as the reaction products in approximately 0.7 ratio. Almost the same ratio is found for purified complex I (0.6) and for the aerobic succinate-supported reverse electron transfer reaction. Superoxide production is depressed at high, more physiologically relevant NADH concentrations, whereas hydrogen peroxide formation is insensitive to the elevated level of NADH. The rates of H(2)O(2) formation at variable NAD(+)/NADH ratios satisfactorily fit the Nernst equation for a single reactive two-electron donor component equilibrated with ambient midpoint redox potential of -347mV (0.13 NAD(+)/NADH ratio, pH 8.0). Half-maximal superoxide production rate proceeds at significantly higher NAD(+)/NADH ratio (0.33). Guanidine strongly stimulates NADH-supported hydrogen peroxide and superoxide production at any NADH concentration and activates NADH:ferricyanide and inhibits NADH:hexaammineruthenium (III) reductase activities while showing no effects on NADH oxidase of SMP. In the low range of NADH concentration, superoxide production rate shows a simple hyperbolic dependence on NADH with apparent K(m)(NADH) of 0.5μM, whereas sigmoidal dependence of hydrogen peroxide production is seen with half-maximal rate at 25μM NADH. We interpret the data as to suggest that at least two sites participate in complex I-mediated ROS generation: FMNH(-) that produces hydrogen peroxide, and an iron-sulfur center (likely N-2) that produces superoxide anion.
线粒体内膜外翻小颗粒(SMP)中的膜结合呼吸复合体I在以NADH和/或琥珀酸为底物的反应中催化超氧化物和过氧化氢的生成。在最佳NADH浓度(50μM)下,复合体I介导的过程会生成两个超氧化物阴离子和H₂O₂作为反应产物,其比例约为0.7。纯化的复合体I(0.6)以及需氧琥珀酸支持的逆向电子传递反应中也发现了几乎相同的比例。在较高且更接近生理浓度的NADH条件下,超氧化物的生成受到抑制,而过氧化氢的生成对NADH水平的升高不敏感。在不同NAD⁺/NADH比例下过氧化氢的生成速率符合能斯特方程,该方程适用于单个具有反应活性的双电子供体组分,其与环境中点氧化还原电位-347mV(pH 8.0时NAD⁺/NADH比例为0.13)达到平衡。超氧化物生成速率达到最大值的一半时所需的NAD⁺/NADH比例显著更高(0.33)。胍在任何NADH浓度下都能强烈刺激NADH支持的过氧化氢和超氧化物的生成,并激活NADH:铁氰化物还原酶活性,同时抑制NADH:六氨合钌(III)还原酶活性,而对SMP的NADH氧化酶没有影响。在低浓度NADH范围内,超氧化物生成速率对NADH呈现简单的双曲线依赖性,表观Kₘ(NADH)为0.5μM,而过氧化氢生成则呈现S形依赖性,在25μM NADH时达到最大速率的一半。我们对这些数据的解释表明,至少有两个位点参与复合体I介导的活性氧生成:产生过氧化氢的FMNH⁻,以及产生超氧化物阴离子的铁硫中心(可能是N-2)。