Nakai Tomoko, Mochida Joji, Sakai Daisuke
Division of Organogenesis, Research Center for Regenerative Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Japan.
Arthritis Res Ther. 2008;10(6):R140. doi: 10.1186/ar2567. Epub 2008 Dec 5.
Although transforming growth factor beta1 (TGFbeta1) is known to be a potent inhibitor of proliferation in most cell types, it accelerates proliferation in certain mesenchymal cells, such as articular chondrocytes and nucleus pulposus cells. The low ability for self-renewal of nucleus pulposus cells is one obstacle in developing new therapeutic options for intervertebral disc diseases, and utilizing cytokines is one of the strategies to regulate nucleus pulposus cell proliferation. However, the precise cell cycle progression and molecular mechanisms by which TGFbeta1 stimulates cell growth remain unclear. The aim of this study was to elucidate a mechanism that enables cell proliferation with TGFbeta1 stimulation.
We tested cultured rat nucleus pulposus cells for proliferation and cell cycle distribution under exogenous TGFbeta1 stimulation with and without putative pharmaceutical inhibitors. To understand the molecular mechanism, we evaluated the expression levels of key regulatory G1 phase proteins, c-Myc and the cyclin-dependent kinase inhibitors.
We found that TGFbeta1 promoted proliferation and cell cycle progression while reducing expression of the cyclin-dependent kinase inhibitors p21 and p27, which are downregulators of the cell cycle. Robust c-Myc expression for 2 h and immediate phosphorylation of extra cellular signal regulated kinase (ERK1/2) were detected in cultures when TGFbeta1 was added. However, pretreatment with 10058-F4 (an inhibitor of c-Myc transcriptional activity) or PD98059 (an inhibitor of ERK1/2) suppressed c-Myc expression and ERK1/2 phosphorylation, and inhibited cell cycle promotion by TGFbeta1.
Our experimental results indicate that TGFbeta1 promotes cell proliferation and cell cycle progression in rat nucleus pulposus cells and that c-Myc and phosphorylated ERK1/2 play important roles in this mechanism. While the difference between rat and human disc tissues requires future studies using different species, investigation of distinct response in the rat model provides fundamental information to elucidate a specific regulatory pathway of TGFbeta1.
尽管已知转化生长因子β1(TGFβ1)在大多数细胞类型中是一种强大的增殖抑制剂,但它能加速某些间充质细胞的增殖,如关节软骨细胞和髓核细胞。髓核细胞自我更新能力较低是开发椎间盘疾病新治疗方案的一个障碍,利用细胞因子是调节髓核细胞增殖的策略之一。然而,TGFβ1刺激细胞生长的确切细胞周期进程和分子机制仍不清楚。本研究的目的是阐明一种在TGFβ1刺激下实现细胞增殖的机制。
我们检测了培养的大鼠髓核细胞在有或没有假定药物抑制剂的外源性TGFβ1刺激下的增殖和细胞周期分布。为了解分子机制,我们评估了关键调控G1期蛋白、c-Myc和细胞周期蛋白依赖性激酶抑制剂的表达水平。
我们发现TGFβ1促进增殖和细胞周期进程,同时降低细胞周期蛋白依赖性激酶抑制剂p21和p27的表达,p21和p27是细胞周期的下调因子。添加TGFβ1时,培养物中检测到c-Myc在2小时内强烈表达以及细胞外信号调节激酶(ERK1/2)立即磷酸化。然而,用10058-F4(一种c-Myc转录活性抑制剂)或PD98059(一种ERK1/2抑制剂)预处理可抑制c-Myc表达和ERK1/2磷酸化,并抑制TGFβ1对细胞周期的促进作用。
我们的实验结果表明,TGFβ1促进大鼠髓核细胞的细胞增殖和细胞周期进程,并且c-Myc和磷酸化的ERK1/2在这一机制中发挥重要作用。虽然大鼠和人类椎间盘组织之间的差异需要未来使用不同物种进行研究,但对大鼠模型中不同反应的研究为阐明TGFβ1的特定调节途径提供了基础信息。