Lan Yueheng, Elston Timothy C, Papoian Garegin A
Department of Chemistry, University of North Carolina at Chapel Hill, North Carolina 27599-3290, USA.
J Chem Phys. 2008 Dec 7;129(21):214115. doi: 10.1063/1.3027499.
Internal and external fluctuations are ubiquitous in cellular signaling processes. Because biochemical reactions often evolve on disparate time scales, mathematical perturbation techniques can be invoked to reduce the complexity of stochastic models. Previous work in this area has focused on direct treatment of the master equation. However, eliminating fast variables in the chemical Langevin equation is also an important problem. We show how to solve this problem by utilizing a partial equilibrium assumption. Our technique is applied to a simple birth-death-dimerization process and a more involved gene regulation network, demonstrating great computational efficiency. Excellent agreement is found with results computed from exact stochastic simulations. We compare our approach with existing reduction schemes and discuss avenues for future improvement.
内部和外部波动在细胞信号传导过程中无处不在。由于生化反应通常在不同的时间尺度上演变,因此可以采用数学微扰技术来降低随机模型的复杂性。该领域以前的工作主要集中在对主方程的直接处理上。然而,消除化学朗之万方程中的快速变量也是一个重要问题。我们展示了如何利用部分平衡假设来解决这个问题。我们的技术应用于一个简单的出生-死亡-二聚化过程和一个更复杂的基因调控网络,显示出很高的计算效率。与精确随机模拟计算的结果非常吻合。我们将我们的方法与现有的简化方案进行了比较,并讨论了未来改进的途径。