Nash Abigail I, Ko Wen-Huang, Harper Shannon M, Gardner Kevin H
Departments of Biochemistry and Pharmacology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-8816, USA.
Biochemistry. 2008 Dec 30;47(52):13842-9. doi: 10.1021/bi801430e.
Light is a key stimulus for plant biological functions, several of which are controlled by light-activated kinases known as phototropins, a group of kinases that contain two light-sensing domains (LOV, light-oxygen-voltage domains) and a C-terminal serine/threonine kinase domain. The second sensory domain, LOV2, plays a key role in regulating kinase enzymatic activity via the photochemical formation of a covalent adduct between a LOV2 cysteine residue and an internally bound flavin mononucleotide (FMN) chromophore. Subsequent conformational changes in LOV2 lead to the unfolding of a peripheral Jalpha helix and, ultimately, phototropin kinase activation. To date, the mechanism coupling bond formation and helix dissociation has remained unclear. Previous studies found that a conserved glutamine residue [Q513 in the Avena sativa phototropin 1 LOV2 (AsLOV2) domain] switches its hydrogen bonding pattern with FMN upon light stimulation. Located in the immediate vicinity of the FMN binding site, this Gln residue is provided by the Ibeta strand that interacts with the Jalpha helix, suggesting a route for signal propagation from the core of the LOV domain to its peripheral Jalpha helix. To test whether Q513 plays a key role in tuning the photochemical and transduction properties of AsLOV2, we designed two point mutations, Q513L and Q513N, and monitored the effects on the chromophore and protein using a combination of UV-visible absorbance and circular dichroism spectroscopy, limited proteolysis, and solution NMR. The results show that these mutations significantly dampen the changes between the dark and lit state AsLOV2 structures, leaving the protein in a pseudodark state (Q513L) or a pseudolit state (Q513N). Further, both mutations changed the photochemical properties of this receptor, in particular the lifetime of the photoexcited signaling states. Together, these data establish that this residue plays a central role in both spectral tuning and signal propagation from the core of the LOV domain through the Ibeta strand to the peripheral Jalpha helix.
光是植物生物学功能的关键刺激因素,其中一些功能由称为向光素的光激活激酶控制,这是一类激酶,包含两个光感应结构域(LOV,光 - 氧 - 电压结构域)和一个C末端丝氨酸/苏氨酸激酶结构域。第二个传感结构域LOV2,通过LOV2半胱氨酸残基与内部结合的黄素单核苷酸(FMN)发色团之间共价加合物的光化学形成,在调节激酶酶活性中起关键作用。随后LOV2中的构象变化导致外周Jα螺旋展开,并最终导致向光素激酶激活。迄今为止,连接键形成和螺旋解离的机制仍不清楚。先前的研究发现,一个保守的谷氨酰胺残基[燕麦向光素1 LOV2(AsLOV2)结构域中的Q513]在光刺激下与FMN切换其氢键模式。该Gln残基位于FMN结合位点的紧邻处,由与Jα螺旋相互作用的Iβ链提供,表明从LOV结构域的核心到其外周Jα螺旋的信号传播途径。为了测试Q513是否在调节AsLOV2的光化学和转导特性中起关键作用,我们设计了两个点突变,Q513L和Q513N,并使用紫外 - 可见吸收光谱和圆二色光谱、有限蛋白酶解和溶液核磁共振的组合监测对发色团和蛋白质的影响。结果表明,这些突变显著抑制了黑暗和光照状态下AsLOV2结构之间的变化,使蛋白质处于假黑暗状态(Q513L)或假光照状态(Q513N)。此外,这两个突变都改变了该受体的光化学性质,特别是光激发信号状态的寿命。总之,这些数据表明该残基在光谱调节以及从LOV结构域的核心通过Iβ链到外周Jα螺旋的信号传播中都起着核心作用。