Suppr超能文献

QM 计算预测 LOV 光感受器中瞬态谷氨酰胺异构体的能量学和红外光谱。

QM calculations predict the energetics and infrared spectra of transient glutamine isomers in LOV photoreceptors.

机构信息

Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Průmyslová 595, CZ-252 50 Vestec, Czechia.

Department of Physics and Astronomy, Faculty of Sciences, Vrije Universiteit, 1081 De Boelelaan, 1081HV Amsterdam, The Netherlands.

出版信息

Phys Chem Chem Phys. 2021 Jun 30;23(25):13934-13950. doi: 10.1039/d1cp00447f.

Abstract

Photosensory receptors containing the flavin-binding light-oxygen-voltage (LOV) domain are modular proteins that fulfil a variety of biological functions ranging from gene expression to phototropism. The LOV photocycle is initiated by blue-light and involves a cascade of intermediate species, including an electronically excited triplet state, that leads to covalent bond formation between the flavin mononucleotide (FMN) chromophore and a nearby cysteine residue. Subsequent conformational changes in the polypeptide chain arise due to the remodelling of the hydrogen bond network in the cofactor binding pocket, whereby a conserved glutamine residue plays a key role in coupling FMN photochemistry with LOV photobiology. Although the dark-to-light transition of LOV photosensors has been previously addressed by spectroscopy and computational approaches, the mechanistic basis of the underlying reactions is still not well understood. Here we present a detailed computational study of three distinct LOV domains: EL222 from Erythrobacter litoralis, AsLOV2 from the second LOV domain of Avena sativa phototropin 1, and RsLOV from Rhodobacter sphaeroides LOV protein. Extended protein-chromophore models containing all known crucial residues involved in the initial steps (femtosecond-to-microsecond) of the photocycle were employed. Energies and rotational barriers were calculated for possible rotamers and tautomers of the critical glutamine side chain, which allowed us to postulate the most energetically favoured glutamine orientation for each LOV domain along the assumed reaction path. In turn, for each evolving species, infrared difference spectra were constructed and compared to experimental EL222 and AsLOV2 transient infrared spectra, the former from original work presented here and the latter from the literature. The good agreement between theory and experiment permitted the assignment of the majority of observed bands, notably the ∼1635 cm-1 transient of the adduct state to the carbonyl of the glutamine side chain after rotation. Moreover, both the energetic and spectroscopic approaches converge in suggesting a facile glutamine flip at the adduct intermediate for EL222 and more so for AsLOV2, while for RsLOV the glutamine keeps its initial configuration. Additionally, the computed infrared shifts of the glutamine and interacting residues could guide experimental research addressing early events of signal transduction in LOV proteins.

摘要

含黄素结合光氧电压 (LOV) 结构域的感光受体是具有多种生物学功能的模块化蛋白,从基因表达到向光性。LOV 光循环由蓝光引发,涉及一系列中间产物,包括激发三重态,这导致黄素单核苷酸 (FMN) 发色团与附近半胱氨酸残基之间形成共价键。由于辅因子结合口袋中氢键网络的重塑,多肽链随后发生构象变化,其中保守的谷氨酰胺残基在将 FMN 光化学与 LOV 光生物学偶联中起着关键作用。尽管以前已经通过光谱和计算方法研究了 LOV 光传感器的暗至光的转变,但潜在反应的机制基础仍未得到很好的理解。在这里,我们对三种不同的 LOV 结构域进行了详细的计算研究:来自 Erythrobacter litoralis 的 EL222、来自 Avena sativa 光受体 1 的第二个 LOV 结构域的 AsLOV2 和来自 Rhodobacter sphaeroides LOV 蛋白的 RsLOV。使用了包含光循环初始步骤(飞秒至微秒)中所有已知关键残基的扩展蛋白-发色团模型。计算了关键谷氨酰胺侧链可能的构象异构体和互变异构体的能量和旋转势垒,这使我们能够推测每个 LOV 结构域在假定反应路径上最有利的谷氨酰胺取向。反过来,为每个演化物种构建了红外差谱,并与实验的 EL222 和 AsLOV2 瞬态红外光谱进行了比较,前者来自本文的原始工作,后者来自文献。理论与实验之间的良好一致性允许对大多数观察到的带进行分配,特别是在 adduct 状态下的 ∼1635 cm-1 瞬态归因于谷氨酰胺侧链的羰基在旋转后。此外,能量和光谱方法都表明,对于 EL222 和更明显的 AsLOV2,在 adduct 中间体处谷氨酰胺很容易翻转,而对于 RsLOV,谷氨酰胺保持其初始构型。此外,计算出的谷氨酰胺和相互作用残基的红外位移可以指导实验研究 LOV 蛋白中信号转导的早期事件。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61bf/8246142/96e1a12d99d5/d1cp00447f-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验