Department of Oncology, Transplantations and New Technologies in Medicine, University of Pisa, Pisa, Italy.
Unit of Oncology, Department of Medical and Oncological Area, Azienda Ospedaliera-Universitaria Pisana, Pisa, Italy.
Front Immunol. 2024 Jul 25;15:1353787. doi: 10.3389/fimmu.2024.1353787. eCollection 2024.
Metabolic reprogramming is a k`ey hallmark of tumors, developed in response to hypoxia and nutrient deficiency during tumor progression. In both cancer and immune cells, there is a metabolic shift from oxidative phosphorylation (OXPHOS) to aerobic glycolysis, also known as the Warburg effect, which then leads to lactate acidification, increased lipid synthesis, and glutaminolysis. This reprogramming facilitates tumor immune evasion and, within the tumor microenvironment (TME), cancer and immune cells collaborate to create a suppressive tumor immune microenvironment (TIME). The growing interest in the metabolic reprogramming of the TME, particularly its significance in colorectal cancer (CRC)-one of the most prevalent cancers-has prompted us to explore this topic. CRC exhibits abnormal glycolysis, glutaminolysis, and increased lipid synthesis. Acidosis in CRC cells hampers the activity of anti-tumor immune cells and inhibits the phagocytosis of tumor-associated macrophages (TAMs), while nutrient deficiency promotes the development of regulatory T cells (Tregs) and M2-like macrophages. In CRC cells, activation of G-protein coupled receptor 81 (GPR81) signaling leads to overexpression of programmed death-ligand 1 (PD-L1) and reduces the antigen presentation capability of dendritic cells. Moreover, the genetic and epigenetic cell phenotype, along with the microbiota, significantly influence CRC metabolic reprogramming. Activating RAS mutations and overexpression of epidermal growth factor receptor (EGFR) occur in approximately 50% and 80% of patients, respectively, stimulating glycolysis and increasing levels of hypoxia-inducible factor 1 alpha (HIF-1α) and MYC proteins. Certain bacteria produce short-chain fatty acids (SCFAs), which activate CD8+ cells and genes involved in antigen processing and presentation, while other mechanisms support pro-tumor activities. The use of immune checkpoint inhibitors (ICIs) in selected CRC patients has shown promise, and the combination of these with drugs that inhibit aerobic glycolysis is currently being intensively researched to enhance the efficacy of immunotherapy.
代谢重编程是肿瘤的一个关键特征,是肿瘤进展过程中缺氧和营养缺乏时发生的。在癌症和免疫细胞中,代谢从氧化磷酸化(OXPHOS)转向有氧糖酵解,也称为沃伯格效应,随后导致乳酸酸化、脂质合成增加和谷氨酰胺分解。这种重编程促进了肿瘤免疫逃逸,并且在肿瘤微环境(TME)中,癌症和免疫细胞协同作用创造了一个抑制性的肿瘤免疫微环境(TIME)。人们对 TME 的代谢重编程越来越感兴趣,特别是其在结直肠癌(CRC)中的意义——CRC 是最常见的癌症之一——促使我们探索这个话题。CRC 表现出异常的糖酵解、谷氨酰胺分解和增加的脂质合成。CRC 细胞的酸中毒会抑制抗肿瘤免疫细胞的活性并抑制肿瘤相关巨噬细胞(TAMs)的吞噬作用,而营养缺乏会促进调节性 T 细胞(Tregs)和 M2 样巨噬细胞的发育。在 CRC 细胞中,G 蛋白偶联受体 81(GPR81)信号的激活导致程序性死亡配体 1(PD-L1)的过表达,并降低树突状细胞的抗原呈递能力。此外,遗传和表观遗传细胞表型以及微生物组对 CRC 的代谢重编程有显著影响。RAS 基因突变的激活和表皮生长因子受体(EGFR)的过度表达分别发生在大约 50%和 80%的患者中,刺激糖酵解并增加缺氧诱导因子 1α(HIF-1α)和 MYC 蛋白的水平。某些细菌产生短链脂肪酸(SCFAs),激活 CD8+细胞和参与抗原加工和呈递的基因,而其他机制则支持肿瘤促进活性。在选定的 CRC 患者中使用免疫检查点抑制剂(ICIs)显示出前景,并且目前正在深入研究将这些药物与抑制有氧糖酵解的药物联合使用,以提高免疫治疗的效果。