Suppr超能文献

一种用于对从高维组合分数对角色谱法获得的高分辨率质谱数据进行预处理的策略。

A strategy for the prior processing of high-resolution mass spectral data obtained from high-dimensional combined fractional diagonal chromatography.

作者信息

Valkenborg Dirk, Thomas Grégoire, Krols Luc, Kas Koen, Burzykowski Tomasz

机构信息

Interuniversity Institute for Biostatistics and statistical Bioinformatics, Katholieke Universiteit Leuven, Leuven, Belgium.

出版信息

J Mass Spectrom. 2009 Apr;44(4):516-29. doi: 10.1002/jms.1527.

Abstract

Combined fractional diagonal chromatography (COFRADIC) is a novel suite of gel-free technologies for the identification of biomarkers in complex peptide mixtures. For this purpose, reversed-phase high performance liquid chromatography (HPLC) technology and, in this case, matrix assisted laser desorption /ionization- time of flight (MALDI-TOF) mass spectrometers are extensively used. The particular characteristic of COFRADIC mass spectrometry data is the high number of chromatographic fractions, over which a peptide can be scattered. This can obstruct the quantification of the peptide abundance in the biological sample, which is required for statistical analysis. On the other hand, because of the superior peptide sorting properties of the methodology, the mass spectra become less crowded. Consequently, each peptide appears in a mass spectrum as a series of peaks with peak heights proportional to the probability of occurrence of the isotopic variants of the peptide. In this manuscript, we propose an analysis strategy concerned with the preprocessing of COFRADIC mass spectra prior to a downstream statistical analysis. The preprocessing algorithm produces for each mass spectrum a peptide list by exploiting the characteristic features that should be associated with peaks corresponding to an isotopically resolved cluster of peptide peaks. This reduction step is necessary to facilitate the clustering used in a next step to assemble the validated monoisotopic peptide peaks found over several fractions into a single peptide abundance. To assess the performance of the algorithm, two technical experiments were conducted. The proposed strategy is memory and computationally efficient.

摘要

组合分数对角线色谱法(COFRADIC)是一套用于鉴定复杂肽混合物中生物标志物的新型无凝胶技术。为此,广泛使用反相高效液相色谱(HPLC)技术,在本文中还使用了基质辅助激光解吸/电离飞行时间(MALDI-TOF)质谱仪。COFRADIC质谱数据的特殊之处在于色谱馏分数量众多,肽可能分散在这些馏分中。这可能会妨碍对生物样品中肽丰度的定量,而这是统计分析所必需的。另一方面,由于该方法具有出色的肽分选特性,质谱图变得不那么拥挤。因此,每个肽在质谱图中表现为一系列峰,峰高与该肽同位素变体出现的概率成正比。在本手稿中,我们提出了一种在下游统计分析之前对COFRADIC质谱进行预处理的分析策略。预处理算法通过利用与对应于肽峰同位素分辨簇的峰相关的特征,为每个质谱生成一个肽列表。这一简化步骤对于促进下一步的聚类是必要的,以便将在多个馏分中找到的经过验证的单同位素肽峰组装成单一的肽丰度。为了评估该算法的性能,进行了两项技术实验。所提出的策略在内存和计算方面都很高效。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验