Brehm Jessica H, Mellors John W, Sluis-Cremer Nicolas
Department of Medicine, Division of Infectious Diseases, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA.
Biochemistry. 2008 Dec 30;47(52):14020-7. doi: 10.1021/bi8014778.
We recently reported that zidovudine (AZT) selected for the Q509L mutation in the ribonuclease H (RNase H) domain of HIV-1 reverse transcriptase (RT), which increases resistance to AZT in combination with the thymidine analogue mutations D67N, K70R, and T215F. In the current study, we have defined the mechanism by which Q509L confers AZT resistance by performing in-depth biochemical analyses of wild type, D67N/K70R/T215F and D67N/K70R/T215F/Q509L HIV-1 RT. Our results show that Q509L increases AZT-monophosphate (AZT-MP) excision activity of RT on RNA/DNA template/primers (T/Ps) but not DNA/DNA T/Ps. This increase in excision activity on the RNA/DNA T/P is due to Q509L decreasing a secondary RNase H cleavage event that reduces the RNA/DNA duplex length to 10 nucleotides and significantly impairs the enzyme's ability to excise the chain-terminating nucleotide. Presteady-state kinetic analyses indicate that Q509L does not affect initial rates of the polymerase-directed RNase H activity but only polymerase-independent cleavages that occur after a T/P dissociation event. Furthermore, competition binding assays suggest that Q509L decreases the affinity of the enzyme to bind T/P with duplex lengths less than 18 nucleotides in the polymerase-independent RNase H cleavage mode, while not affecting the enzyme's affinity to bind the same T/P in an AZT-MP excision competent mode. Taken together, this study provides the first mechanistic insights into how a mutation in the RNase H domain of RT increases AZT resistance and highlights how the polymerase and RNase H domains of RT function in concert to confer drug resistance.
我们最近报道,齐多夫定(AZT)可导致HIV-1逆转录酶(RT)的核糖核酸酶H(RNase H)结构域中出现Q509L突变,该突变与胸苷类似物突变D67N、K70R和T215F一起增加了对AZT的耐药性。在本研究中,我们通过对野生型、D67N/K70R/T215F和D67N/K70R/T215F/Q509L HIV-1 RT进行深入的生化分析,确定了Q509L赋予AZT耐药性的机制。我们的结果表明,Q509L增加了RT对RNA/DNA模板/引物(T/P)的单磷酸齐多夫定(AZT-MP)切除活性,但对DNA/DNA T/P没有影响。RNA/DNA T/P切除活性的增加是由于Q509L减少了第二次RNase H切割事件,该事件将RNA/DNA双链长度缩短至10个核苷酸,并显著损害了酶切除链终止核苷酸的能力。稳态前动力学分析表明,Q509L不影响聚合酶导向的RNase H活性的初始速率,而只影响T/P解离事件后发生的非聚合酶依赖性切割。此外,竞争结合试验表明,Q509L在非聚合酶依赖性RNase H切割模式下降低了酶与双链长度小于18个核苷酸的T/P结合的亲和力,而在AZT-MP切除活性模式下不影响酶与相同T/P结合的亲和力。综上所述,本研究首次深入揭示了RT的RNase H结构域中的突变如何增加AZT耐药性,并突出了RT的聚合酶和RNase H结构域如何协同发挥作用赋予耐药性。