Suppr超能文献

Biosynthetic maturation of an ascites tumor cell surface sialomucin. Evidence for O-glycosylation of cell surface glycoprotein by the addition of new oligosaccharides during recycling.

作者信息

Hull S R, Sugarman E D, Spielman J, Carraway K L

机构信息

Department of Cell Biology and Anatomy, University of Miami School of Medicine, Florida 33101.

出版信息

J Biol Chem. 1991 Jul 25;266(21):13580-6.

PMID:1906879
Abstract

Previous biosynthetic studies of the ascites 13762 rat mammary adenocarcinoma cell surface sialomucin ASGP-1 (ascites sialoglycoprotein-1) showed that it is synthesized initially as a poorly glycosylated immature form, which is converted to a larger premature form (t1/2 30 min) and more slowly to the mature glycoprotein (t1/2 greater than 4 h). In the present study O-glycosylation of ASGP-1 polypeptide is shown to occur in two phases: an early phase complete in less than 30 min, which corresponds to the synthesis of the premature form, and a later phase that continues for hours and corresponds to the synthesis of the mature form. Pulse-chase labeling studies indicate that 95% of the ASGP-1 has moved to the cell surface in 2 h. Since transit to the cell surface is faster than the slow phase of addition of new oligosaccharides, some new oligosaccharides must be added after ASGP-1 has reached the cell surface. Initiation of new oligosaccharides on cell surface ASGP-1 was demonstrated directly using a biotinylation procedure to identify cell surface molecules. Glucosamine labeling of biotinylated ASGP-1 was shown to occur on galactosamine residues, which are linked to the polypeptide, establishing the addition of new oligosaccharides to the cell surface molecules. Finally, resialylation studies indicate that ASGP-1 rapidly recycles through a sialylating compartment. From these results we propose that ASGP-1 reaches the cell surface in an incompletely glycosylated state and that additional oligosaccharides are added to the glycoprotein in a second process involving recycling.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验