Suppr超能文献

采用小波包变换提高偏最小二乘模型的预测能力:关于傅里叶变换红外光谱法测定汽油参数的案例研究

Improvement of prediction ability of PLS models employing the wavelet packet transform: A case study concerning FT-IR determination of gasoline parameters.

作者信息

Santos Rodrigo Neves Figueiredo Dos, Galvão Roberto Kawakami Harrop, Araujo Mario Cesar Ugulino, Silva Edvan Cirino da

机构信息

Universidade Federal da Paraíba, CCEN, Departamento de Química, Laboratório de Automação e Instrumentação em Química analítica/Quimiometria (LAQA), Caixa Postal 5093, CEP 58051-970, João Pessoa, PB, Brazil.

出版信息

Talanta. 2007 Feb 28;71(3):1136-43. doi: 10.1016/j.talanta.2006.06.023. Epub 2006 Jul 24.

Abstract

The wavelet packet transform (WPT) is a variant of the standard wavelet transform that offers greater flexibility in the decomposition of instrumental signals. Although encouraging results have been published concerning the use of WPT for signal compression and denoising, its application in multivariate calibration problems has received comparatively little attention, with very few contributions reported in the literature. This paper presents an investigation concerning the use of WPT as a feature extraction tool to improve the prediction ability of PLS models. The optimization of the wavelet packet tree is accomplished by using the classic dynamic programming algorithm and an entropy cost function modified to take into account the variance explained by the WPT coefficients. The selection of WPT coefficients for inclusion in the PLS model is carried out on the basis of correlation with the dependent variable, in order to exploit the joint statistics of the instrumental response and the parameter of interest. This WPT-PLS strategy is applied in a case study involving FT-IR spectrometric determination of four gasoline parameters, namely specific mass (SM) and the distillation temperatures at which 10%, 50%, 90% of the sample has evaporated. The dataset comprises 103 gasoline samples collected from gas stations and 6144 wavelengths in the range 2500-15000nm. By applying WPT to the FT-IR spectra, considerable compression with respect to the original wavelength domain is achieved. The effect of varying the wavelet and the threshold level on the prediction ability of the resulting models is investigated. The results show that WPT-PLS outperforms standard PLS in most wavelet-threshold combinations for all determined parameters.

摘要

小波包变换(WPT)是标准小波变换的一种变体,在仪器信号分解方面具有更大的灵活性。尽管关于WPT用于信号压缩和去噪已发表了令人鼓舞的结果,但其在多元校准问题中的应用相对较少受到关注,文献中报道的贡献也很少。本文介绍了一项关于使用WPT作为特征提取工具以提高PLS模型预测能力的研究。通过使用经典动态规划算法和修改后的熵成本函数来优化小波包树,该熵成本函数考虑了WPT系数所解释的方差。基于与因变量的相关性来选择纳入PLS模型的WPT系数,以便利用仪器响应和感兴趣参数的联合统计信息。这种WPT-PLS策略应用于一个案例研究,该研究涉及傅里叶变换红外光谱法测定四个汽油参数,即比重(SM)以及样品蒸发10%、50%、90%时的蒸馏温度。数据集包含从加油站收集的103个汽油样品以及2500 - 15000nm范围内的6144个波长。通过将WPT应用于傅里叶变换红外光谱,相对于原始波长域实现了相当大的压缩。研究了改变小波和阈值水平对所得模型预测能力的影响。结果表明,对于所有测定参数,在大多数小波 - 阈值组合中,WPT-PLS的性能优于标准PLS。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验