Suppr超能文献

比较不同输入层的人工神经网络和 GA-PLS 研究用于同时分光荧光法测定褪黑素和盐酸吡哆醇,同时存在褪黑素的主要杂质。

Comparative ANNs with different input layers and GA-PLS study for simultaneous spectrofluorimetric determination of melatonin and pyridoxine HCl in the presence of melatonin’s main impurity.

机构信息

Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia.

出版信息

Molecules. 2013 Jan 14;18(1):974-96. doi: 10.3390/molecules18010974.

Abstract

Melatonin (MLT) has many health implications, therefore it is important to develop specific analytical methods for the determination of MLT in the presence of its main impurity, N-{2-[1-({3-[2-(acetylamino)ethyl]-5-methoxy-1H-indol-2-yl}methyl)-5-methoxy-1H-indol-3-yl]ethyl}acetamide (DMLT) and pyridoxine HCl (PNH) as a co-formulated drug. This work describes simple, sensitive, and reliable four multivariate calibration methods, namely artificial neural network preceded by genetic algorithm (GA-ANN), principal component analysis (PCA-ANN) and wavelet transform procedures (WT-ANN) as well as partial least squares preceded by genetic algorithm (GA-PLS) for the spectrofluorimetric determination of MLT and PNH in the presence of DMLT. Analytical performance of the proposed methods was statistically validated with respect to linearity, accuracy, precision and specificity. The proposed methods were successfully applied for the assay of MLT in laboratory prepared mixtures containing up to 15% of DMLT and in commercial MLT tablets with recoveries of no less than 99.00%. No interference was observed from common pharmaceutical additives and the results compared favorably with those obtained by a reference method.

摘要

褪黑素 (MLT) 对健康有诸多影响,因此开发一种能在其主要杂质 N-{2-[1-({3-[2-(乙酰氨基)乙基]-5-甲氧基-1H-吲哚-2-基}甲基)-5-甲氧基-1H-吲哚-3-基]乙基}乙酰胺 (DMLT) 和盐酸吡哆醇 (PNH) 存在下测定 MLT 的特定分析方法非常重要。本工作描述了四种简单、灵敏、可靠的多元校正方法,即人工神经网络结合遗传算法 (GA-ANN)、主成分分析 (PCA-ANN) 和小波变换程序 (WT-ANN) 以及遗传算法结合偏最小二乘法 (GA-PLS),用于在 DMLT 存在下测定 MLT 和 PNH 的荧光光度法。所提出方法的分析性能在统计学上通过线性度、准确性、精密度和特异性进行了验证。所提出的方法成功地应用于含有高达 15%的 DMLT 的实验室制备混合物以及市售 MLT 片剂中 MLT 的测定,回收率不低于 99.00%。未观察到常见药物添加剂的干扰,并且与参考方法获得的结果相当。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/84c2/6270584/d4c2a67af5d8/molecules-18-00974-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验