Suppr超能文献

猕猴延髓前庭核和顶核的视动性和前庭反应性

Optokinetic and vestibular responsiveness in the macaque rostral vestibular and fastigial nuclei.

作者信息

Bryan Ayanna S, Angelaki Dora E

机构信息

Department of Neurobiology, Box 8108, Washington University School of Medicine, 660 South Euclid Ave., St. Louis, MO 63110, USA.

出版信息

J Neurophysiol. 2009 Feb;101(2):714-20. doi: 10.1152/jn.90612.2008. Epub 2008 Dec 10.

Abstract

We recorded from rostral vestibular (VN) and rostral fastigial nuclei (FN) neurons that did not respond to eye movements during three-dimensional (3D) vestibular and optokinetic stimulation (OKS). The majority of neurons in both areas (76 and 69% in VN and FN, respectively) responded during both rotational and translational motion. Preferred directions scattered throughout 3D space for translation but showed some preference for pitch/roll over yaw for rotation. VN/FN neurons were also tested during OKS while monkeys suppressed their optokinetic nystagmus by fixating a head-fixed target. Only a handful of cells (VN: 17%, FN: 6%) modulated during 0.5-Hz OKS suppression, but the number of responsive cells increased (VN: 40%, FN: 48%) during 0.02-Hz OKS. Preferred directions for rotation and OKS were not matched on individual neurons, and OKS gains were smaller than the respective gains during rotation. These results were generally similar for VN and FN neurons. We conclude that optokinetic-vestibular convergence might not be as prevalent as earlier studies have suggested.

摘要

我们记录了在三维(3D)前庭和视动刺激(OKS)期间对视动不产生反应的嘴侧前庭(VN)和嘴侧顶核(FN)神经元的活动。两个区域中的大多数神经元(VN和FN中分别为76%和69%)在旋转和平移运动期间均有反应。平移运动的偏好方向散布于整个3D空间,但旋转运动时对俯仰/横滚的偏好略高于偏航。在OKS期间,当猴子通过注视头部固定目标来抑制视动性眼震时,我们也对VN/FN神经元进行了测试。在0.5Hz的OKS抑制期间,仅有少数细胞(VN:17%,FN:6%)被调制,但在0.02Hz的OKS期间,反应性细胞数量增加(VN:40%,FN:48%)。单个神经元上旋转和OKS的偏好方向并不匹配,并且OKS增益小于旋转期间的相应增益。VN和FN神经元的这些结果总体上相似。我们得出结论,视动-前庭汇聚可能不像早期研究所表明的那样普遍。

相似文献

1
Optokinetic and vestibular responsiveness in the macaque rostral vestibular and fastigial nuclei.
J Neurophysiol. 2009 Feb;101(2):714-20. doi: 10.1152/jn.90612.2008. Epub 2008 Dec 10.
2
Direction discrimination thresholds of vestibular and cerebellar nuclei neurons.
J Neurosci. 2010 Jan 13;30(2):439-48. doi: 10.1523/JNEUROSCI.3192-09.2010.
3
Cerebellar nodulectomy impairs spatial memory of vestibular and optokinetic stimulation in rabbits.
J Neurophysiol. 2002 Feb;87(2):962-75. doi: 10.1152/jn.00528.2001.
4
Rostral fastigial nucleus activity in the alert monkey during three-dimensional passive head movements.
J Neurophysiol. 1997 Mar;77(3):1432-46. doi: 10.1152/jn.1997.77.3.1432.
5
Properties of cerebellar fastigial neurons during translation, rotation, and eye movements.
J Neurophysiol. 2005 Feb;93(2):853-63. doi: 10.1152/jn.00879.2004. Epub 2004 Sep 15.
6
Visual-vestibular interaction in vertical vestibular only neurons.
Neuroreport. 2007 Aug 27;18(13):1403-6. doi: 10.1097/WNR.0b013e3282cdeedd.
7
Responses of rostral fastigial neurons to linear acceleration in an alert monkey.
Exp Brain Res. 2001 Jul;139(1):111-5. doi: 10.1007/s002210100747.
8
Control of spatial orientation of the angular vestibulo-ocular reflex by the nodulus and uvula of the vestibulocerebellum.
Ann N Y Acad Sci. 1999 May 28;871:94-122. doi: 10.1111/j.1749-6632.1999.tb09178.x.

引用本文的文献

2
Cognitive, Systems, and Computational Neurosciences of the Self in Motion.
Annu Rev Psychol. 2022 Jan 4;73:103-129. doi: 10.1146/annurev-psych-021021-103038. Epub 2021 Sep 21.
3
Vestibular processing during natural self-motion: implications for perception and action.
Nat Rev Neurosci. 2019 Jun;20(6):346-363. doi: 10.1038/s41583-019-0153-1.
4
Vestibular and Multi-Sensory Influences Upon Self-Motion Perception and the Consequences for Human Behavior.
Front Neurol. 2019 Mar 7;10:63. doi: 10.3389/fneur.2019.00063. eCollection 2019.
5
Flexible egocentric and allocentric representations of heading signals in parietal cortex.
Proc Natl Acad Sci U S A. 2018 Apr 3;115(14):E3305-E3312. doi: 10.1073/pnas.1715625115. Epub 2018 Mar 19.
7
Descending Influences on Vestibulospinal and Vestibulosympathetic Reflexes.
Front Neurol. 2017 Mar 27;8:112. doi: 10.3389/fneur.2017.00112. eCollection 2017.
9
Vestibular animal models: contributions to understanding physiology and disease.
J Neurol. 2016 Apr;263 Suppl 1:S10-23. doi: 10.1007/s00415-015-7909-y. Epub 2016 Apr 15.
10
Congenital Nystagmus Gene FRMD7 Is Necessary for Establishing a Neuronal Circuit Asymmetry for Direction Selectivity.
Neuron. 2016 Jan 6;89(1):177-93. doi: 10.1016/j.neuron.2015.11.032. Epub 2015 Dec 17.

本文引用的文献

1
Frequency-selective coding of translation and tilt in macaque cerebellar nodulus and uvula.
J Neurosci. 2008 Oct 1;28(40):9997-10009. doi: 10.1523/JNEUROSCI.2232-08.2008.
2
Purkinje cells in posterior cerebellar vermis encode motion in an inertial reference frame.
Neuron. 2007 Jun 21;54(6):973-85. doi: 10.1016/j.neuron.2007.06.003.
4
Three dimensional spatial-temporal convergence of otolith related signals in vestibular only neurons in squirrel monkeys.
Exp Brain Res. 2006 Jan;168(3):410-26. doi: 10.1007/s00221-005-0098-7. Epub 2005 Sep 29.
5
Sensory convergence solves a motion ambiguity problem.
Curr Biol. 2005 Sep 20;15(18):1657-62. doi: 10.1016/j.cub.2005.08.009.
6
Pursuit--vestibular interactions in brain stem neurons during rotation and translation.
J Neurophysiol. 2005 Jun;93(6):3418-33. doi: 10.1152/jn.01259.2004. Epub 2005 Jan 12.
7
Properties of cerebellar fastigial neurons during translation, rotation, and eye movements.
J Neurophysiol. 2005 Feb;93(2):853-63. doi: 10.1152/jn.00879.2004. Epub 2004 Sep 15.
8
Neurons compute internal models of the physical laws of motion.
Nature. 2004 Jul 29;430(6999):560-4. doi: 10.1038/nature02754.
9
Multiple reference frames for motion in the primate cerebellum.
J Neurosci. 2004 May 12;24(19):4491-7. doi: 10.1523/JNEUROSCI.0109-04.2004.
10
A METHOD OF MEASURING EYE MOVEMENT USING A SCLERAL SEARCH COIL IN A MAGNETIC FIELD.
IEEE Trans Biomed Eng. 1963 Oct;10:137-45. doi: 10.1109/tbmel.1963.4322822.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验