Hsu Li, Starr Jacqueline R, Zheng Yingye, Schwartz Stephen M
Biostatistics and Biomathematics Program, Fred Hutchinson Cancer Research Center, Seattle, Wash., USA.
Hum Hered. 2009;67(2):88-103. doi: 10.1159/000179557. Epub 2008 Dec 12.
Combining data collected from different sources is a cost-effective and time-efficient approach for enhancing the statistical efficiency in estimating weak-to-modest genetic effects or gene-gene or gene-environment interactions. However, combining data across studies becomes complicated when data are collected under different study designs, such as family-based and unrelated individual-based (e.g., population-based case-control design). In this paper, we describe a general method that permits the joint estimation of effects on disease risk of genes, environmental factors, and gene-gene/gene-environment interactions under a hybrid design that includes cases, parents of cases, and unrelated individuals. We provide both asymptotic theory and statistical inference. Extensive simulation experiments demonstrate that the proposed estimation and inferential methods perform well in realistic settings. We illustrate the method by an application to a study of testicular cancer.
整合从不同来源收集的数据是一种经济高效且节省时间的方法,可提高在估计微弱至中等程度的遗传效应或基因-基因或基因-环境相互作用时的统计效率。然而,当数据是在不同的研究设计下收集时,跨研究整合数据就变得复杂了,例如基于家系的设计和基于非亲属个体的设计(如基于人群的病例对照设计)。在本文中,我们描述了一种通用方法,该方法允许在包含病例、病例的父母以及非亲属个体的混合设计下,联合估计基因、环境因素以及基因-基因/基因-环境相互作用对疾病风险的影响。我们提供了渐近理论和统计推断。大量的模拟实验表明,所提出的估计和推断方法在实际情况下表现良好。我们通过应用于睾丸癌研究来说明该方法。