Curtin Karen, Wong Jathine, Allen-Brady Kristina, Camp Nicola J
Department of Biomedical Informatics, University of Utah, Salt Lake City, UT 84108, USA.
BMC Bioinformatics. 2007 Nov 15;8:448. doi: 10.1186/1471-2105-8-448.
PedGenie software, introduced in 2006, includes genetic association testing of cases and controls that may be independent or related (nuclear families or extended pedigrees) or mixtures thereof using Monte Carlo significance testing. Our aim is to demonstrate that PedGenie, a unique and flexible analysis tool freely available in Genie 2.4 software, is significantly enhanced by incorporating meta statistics for detecting genetic association with disease using data across multiple study groups.
Meta statistics (chi-squared tests, odds ratios, and confidence intervals) were calculated using formal Cochran-Mantel-Haenszel techniques. Simulated data from unrelated individuals and individuals in families were used to illustrate meta tests and their empirically-derived p-values and confidence intervals are accurate, precise, and for independent designs match those provided by standard statistical software.
PedGenie yields accurate Monte Carlo p-values for meta analysis of data across multiple studies, based on validation testing using pedigree, nuclear family, and case-control data simulated under both the null and alternative hypotheses of a genotype-phenotype association.
PedGenie allows valid combined analysis of data from mixtures of pedigree-based and case-control resources. Added meta capabilities provide new avenues for association analysis, including pedigree resources from large consortia and multi-center studies.
2006年推出的PedGenie软件,包括对病例和对照进行基因关联测试,这些病例和对照可能是独立的或相关的(核心家庭或扩展家系),或者是它们的混合体,采用蒙特卡罗显著性检验。我们的目的是证明,PedGenie作为Genie 2.4软件中一个独特且灵活的分析工具,通过纳入元统计量,利用多个研究组的数据检测与疾病的基因关联,得到了显著增强。
使用正式的 Cochr an-Mantel-Haenszel技术计算元统计量(卡方检验、比值比和置信区间)。来自无关个体和家庭中个体的模拟数据用于说明元检验,其经验得出的p值和置信区间是准确、精确的,对于独立设计,与标准统计软件提供的结果相匹配。
基于在基因型-表型关联的无效假设和备择假设下模拟的家系、核心家庭以及病例对照数据进行的验证测试,PedGenie为跨多个研究的数据元分析产生准确的蒙特卡罗p值。
PedGenie允许对基于家系和病例对照资源混合的数据进行有效的联合分析。新增的元功能为关联分析提供了新途径,包括来自大型联盟和多中心研究的家系资源。