Suppr超能文献

一种用于检测候选基因或区域中多个单核苷酸多态性(SNP)与遗传关联的统一框架:对比病例组和对照组之间的基因型得分和连锁不平衡模式。

A unified framework for detecting genetic association with multiple SNPs in a candidate gene or region: contrasting genotype scores and LD patterns between cases and controls.

作者信息

Pan Wei

机构信息

Division of Biostatistics, MMC 303, School of Public Health, University of Minnesota, Minneapolis, MN 55455-0392, USA.

出版信息

Hum Hered. 2010;69(1):1-13. doi: 10.1159/000243149. Epub 2009 Oct 2.

Abstract

It is critical to develop and apply powerful statistical tests for genetic association studies due to typically weak associations with complex human diseases or phenotypes. For population-based case-control studies with unphased multilocus genotype data, most of the existing methods are based on comparing genotype scores, e.g. allele frequencies, between the case and control groups. Another class of approaches are motivated to contrast linkage disequilibrium (LD) patterns between the two groups. It is expected that no single test can be uniformly most powerful across all situations, and different tests may perform better under different scenarios. A recent effort has been devoted to combining the above two classes of approaches, which however has some potential drawbacks. Here we propose a general and simple framework to unify the above two classes of approaches: it is based on the simple idea to incorporate LD measurements, in addition to genotype scores, as covariates in a logistic regression model, from which various tests can be constructed by taking advantage of the nice properties of the score statistics for the logistic model. It also has an advantage in easily accommodating covariates and other study designs. We use simulated data to show that our proposed tests performed well across several scenarios. In particular, in contrast to either of the two classes of the tests that is only powerful in detecting only one, but not both, of the two types of the distributional differences between cases and controls, our proposed tests are sensitive to both.

摘要

由于与复杂人类疾病或表型的关联通常较弱,因此开发和应用强大的基因关联研究统计检验至关重要。对于基于人群的病例对照研究,若有未分型的多位点基因型数据,现有的大多数方法都是基于比较病例组和对照组之间的基因型得分,例如等位基因频率。另一类方法旨在对比两组之间的连锁不平衡(LD)模式。预计没有单一的检验能在所有情况下都是最强大的,不同的检验在不同的场景下可能表现得更好。最近有人致力于将上述两类方法结合起来,然而这有一些潜在的缺点。在此,我们提出一个通用且简单的框架来统一上述两类方法:它基于一个简单的想法,即在逻辑回归模型中,除了基因型得分外,将LD测量值作为协变量纳入,利用逻辑模型得分统计量的良好性质,可以从中构建各种检验。它在轻松纳入协变量和其他研究设计方面也具有优势。我们使用模拟数据表明,我们提出的检验在几种情况下都表现良好。特别是,与仅能有效检测病例组和对照组之间两种分布差异中的一种(而非两种)的两类检验中的任何一类相比,我们提出的检验对两者都敏感。

相似文献

引用本文的文献

本文引用的文献

4
Genetic mapping in human disease.人类疾病中的基因定位
Science. 2008 Nov 7;322(5903):881-8. doi: 10.1126/science.1156409.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验