Hofmann Alexander, Ritz Ulrike, Hessmann Martin Henri, Alini Mauro, Rommens Pol Maria, Rompe Jan-Dirk
Department of Trauma Surgery, Johannes Gutenberg University School of Medicine, Mainz, Germany.
J Trauma. 2008 Dec;65(6):1402-10. doi: 10.1097/TA.0b013e318173e7c2.
The goal of this study was to determine whether cell proliferation, differentiation, and gene expression of primary human osteoblasts (hOB) are influenced by shock wave application (SWA).
Osteoblast cultures were isolated from cancellous bone fragments and treated with 500 impulses of energy flux densities of 0.06 mJ/mm, 0.18 mJ/mm, 0.36 mJ/mm, and 0.50 mJ/mm. Twenty-four hours and 96 hours after SWA cell proliferation, alkaline phosphatase activity, and mineralization were analyzed. The global gene expression profiling was determined 96 hours after SWA employing Affymetrix HG-U133A microarrays.
After 24 hours, hOB showed a dose-dependent increase in cell proliferation from 68.7% (at 0.06 mJ/mm, p = 0.002) up to 81.6% (at 0.5 mJ/mm, p = 0.001), which also persisted after 96 hours. Numbers of alkaline phosphatase-positive hOB increased after SWA treatment with peak levels of response between 0.18 mJ/mm and 0.5 mJ/mm after 24 hours. Mineralization was significantly higher in all groups compared with controls. Microarray analyses revealed SWA-induced differential expression of 94 genes involved in physiologic processes, cell homeostasis, and bone formation. Most intriguing was the up-regulation of multiple genes involved in skeletal development and osteoblast differentiation (e.g., PTHrP, prostaglandin E2-receptor EP3, BMP-2 inducible kinase, chordin, cartilage oligomeric matrix protein, matrillin).
We showed that shock waves have direct dose-dependent stimulatory effects on proliferation and differentiation of osteoblasts from normal human cancellous bone. We demonstrated that several genes critical for osteoblast differentiation and function are regulated after SWA. Overall, data presented herein will aid further understanding of the osteogenic effect of shock waves and, in addition, will enhance current knowledge of the SWA-mediated gene expression.
本研究的目的是确定冲击波应用(SWA)是否会影响原代人成骨细胞(hOB)的细胞增殖、分化和基因表达。
从松质骨碎片中分离成骨细胞培养物,并用能量通量密度为0.06 mJ/mm、0.18 mJ/mm、0.36 mJ/mm和0.50 mJ/mm的500次脉冲进行处理。在SWA后24小时和96小时分析细胞增殖、碱性磷酸酶活性和矿化情况。在SWA后96小时使用Affymetrix HG-U133A微阵列确定全局基因表达谱。
24小时后,hOB的细胞增殖呈剂量依赖性增加,从68.7%(0.06 mJ/mm时,p = 0.002)增至81.6%(0.5 mJ/mm时,p = 0.001),在96小时后这种情况依然持续。SWA处理后,碱性磷酸酶阳性的hOB数量增加,24小时后在0.18 mJ/mm至0.5 mJ/mm之间出现反应峰值水平。与对照组相比,所有组的矿化均显著更高。微阵列分析显示,SWA诱导了94个参与生理过程、细胞稳态和骨形成的基因的差异表达。最引人注目的是多个参与骨骼发育和成骨细胞分化的基因上调(例如,甲状旁腺激素相关蛋白、前列腺素E2受体EP3、骨形态发生蛋白2诱导激酶、腱蛋白、软骨寡聚基质蛋白、基质蛋白)。
我们表明冲击波对正常人松质骨来源的成骨细胞的增殖和分化具有直接的剂量依赖性刺激作用。我们证明了SWA后几种对成骨细胞分化和功能至关重要的基因受到调控。总体而言,本文提供的数据将有助于进一步理解冲击波的成骨作用,此外,还将增进当前对SWA介导的基因表达的认识。