Suppr超能文献

使用定量构效关系(QSAR)和对接技术对血管内皮生长因子受体酪氨酸激酶抑制剂进行分子模拟研究。

Molecular modeling studies of vascular endothelial growth factor receptor tyrosine kinase inhibitors using QSAR and docking.

作者信息

Du Juan, Lei Beilei, Qin Jin, Liu Huanxiang, Yao Xiaojun

机构信息

Department of Chemistry, Lanzhou University, Lanzhou, China.

出版信息

J Mol Graph Model. 2009 Jan;27(5):642-54. doi: 10.1016/j.jmgm.2008.10.006. Epub 2008 Nov 5.

Abstract

The vascular endothelial growth factor (VEGF) and its receptor tyrosine kinases VEGFR-2 or kinase insert domain receptor (KDR) are attractive targets for the development of novel anticancer agents. In the present work, comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) were performed on a series of selective inhibitors of KDR. Docking studies were performed to explore the binding mode between all of the inhibitors and the KDR and produce the bioactive conformation of each compound in the whole dataset. Two conformer-based alignment strategies were employed to construct reliable 3D-QSAR models. The docked conformer-based alignment strategy gave the best 3D-QSAR models. The best CoMFA and CoMSIA models gave a cross-validated coefficient q(2) of 0.546 and 0.715, non-cross-validated r(2) values of 0.936 and 0.961, predicted r(2) values of 0.673 and 0.797, respectively. The information obtained from molecular modeling studies were very helpful to design some novel selective inhibitors of KDR with desired activity.

摘要

血管内皮生长因子(VEGF)及其受体酪氨酸激酶VEGFR - 2或激酶插入结构域受体(KDR)是新型抗癌药物研发的有吸引力的靶点。在本研究中,对一系列KDR选择性抑制剂进行了比较分子场分析(CoMFA)和比较分子相似性指数分析(CoMSIA)。进行对接研究以探索所有抑制剂与KDR之间的结合模式,并生成整个数据集中每种化合物的生物活性构象。采用了两种基于构象异构体的比对策略来构建可靠的3D - QSAR模型。基于对接构象异构体的比对策略给出了最佳的3D - QSAR模型。最佳的CoMFA和CoMSIA模型的交叉验证系数q(2)分别为0.546和0.715,非交叉验证的r(2)值分别为0.936和0.961,预测的r(2)值分别为0.673和0.797。从分子建模研究中获得的信息对于设计一些具有所需活性的新型KDR选择性抑制剂非常有帮助。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验