Suppr超能文献

使用广义质心点法从三维图像估计刚体运动

Estimation of the Rigid-Body Motion from Three-Dimensional Images Using a Generalized Center-of-Mass Points Approach.

作者信息

Feng B, Bruyant P P, Pretorius P H, Beach R D, Gifford H C, Dey J, Gennert M, King M A

机构信息

B. Feng, P. P. Bruyant, P. H. Pretorius, R. D. Beach, H. C. Gifford, J. Dey, and M. A. King are with the Department of Radiology, University of Massachusetts Medical School, Worcester, MA 01655. M. Gennert is with the Department of Computer Science, Worcester Polytechnic Institute, Worcester, MA.

出版信息

IEEE Trans Nucl Sci. 2006 Oct;53(5):2712-2718. doi: 10.1109/TNS.2006.882747.

Abstract

We present an analytical method for the estimation of rigid-body motion in sets of three-dimensional SPECT and PET slices. This method utilizes mathematically defined generalized center-of-mass points in images, requiring no segmentation. It can be applied to compensation of the rigid-body motion in both SPECT and PET, once a series of 3D tomographic images are available. We generalized the formula for the center-of-mass to obtain a family of points co-moving with the object's rigid-body motion. From the family of possible points we chose the best three points which resulted in the minimum root-mean-square difference between images as the generalized center-of-mass points for use in estimating motion. The estimated motion was used to sum the sets of tomographic images, or incorporated in the iterative reconstruction to correct for motion during reconstruction of the combined projection data. For comparison, the principle-axes method was also applied to estimate the rigid-body motion from the same tomographic images. To evaluate our method for different noise levels, we performed simulations with the MCAT phantom. We observed that though noise degraded the motion-detection accuracy, our method helped in reducing the motion artifact both visually and quantitatively. We also acquired four sets of the emission and transmission data of the Data Spectrum Anthropomorphic Phantom positioned at four different locations and/or orientations. From these we generated a composite acquisition simulating periodic phantom movements during acquisition. The simulated motion was calculated from the generalized center-of-mass points calculated from the tomographic images reconstructed from individual acquisitions. We determined that motion-compensation greatly reduced the motion artifact. Finally, in a simulation with the gated MCAT phantom, an exaggerated rigid-body motion was applied to the end-systolic frame. The motion was estimated from the end-diastolic and end-systolic images, and used to sum them into a summed image without obvious artifact. Compared to the principle-axes method, in two of the three comparisons with anthropomorphic phantom data our method estimated the motion in closer agreement to than of the Polaris system than the principal-axes method, while the principle-axes method gave a more accurate estimation of motion in most cases for the MCAT simulations. As an image-driven approach, our method assumes angularly complete data sets for each state of motion. We expect this method to be applied in correction of respiratory motion in respiratory gated SPECT, and respiratory or other rigid-body motion in PET.

摘要

我们提出了一种用于估计三维单光子发射计算机断层扫描(SPECT)和正电子发射断层扫描(PET)切片组中刚体运动的分析方法。该方法利用图像中数学定义的广义质心点,无需分割。一旦有一系列三维断层图像,它就可以应用于SPECT和PET中刚体运动的补偿。我们对质心公式进行了推广,以获得与物体刚体运动共同移动的一系列点。从这些可能的点中,我们选择了最佳的三个点,这些点导致图像之间的均方根差最小,作为用于估计运动的广义质心点。估计的运动用于对断层图像集进行求和,或纳入迭代重建中,以校正组合投影数据重建期间的运动。为了进行比较,主轴线方法也被应用于从相同的断层图像中估计刚体运动。为了评估我们的方法在不同噪声水平下的性能,我们使用MCAT体模进行了模拟。我们观察到,尽管噪声降低了运动检测的准确性,但我们的方法在视觉和定量上都有助于减少运动伪影。我们还获取了位于四个不同位置和/或方向的数据谱拟人化体模的四组发射和透射数据。从这些数据中,我们生成了一个模拟采集过程中体模周期性运动的复合采集。模拟运动是根据从各个采集重建的断层图像计算出的广义质心点计算得出的。我们确定运动补偿大大减少了运动伪影。最后,在使用门控MCAT体模的模拟中,对收缩末期帧应用了夸张的刚体运动。从舒张末期和收缩末期图像估计运动,并将其用于将它们求和成一个没有明显伪影的求和图像。与主轴线方法相比,在与拟人化体模数据的三次比较中的两次中,我们的方法估计的运动与北极星系统的运动比主轴线方法更接近,而在大多数MCAT模拟情况下,主轴线方法给出了更准确的运动估计。作为一种图像驱动方法,我们的方法假设每个运动状态都有角度完整的数据集。我们期望这种方法可应用于呼吸门控SPECT中的呼吸运动校正,以及PET中的呼吸或其他刚体运动校正。

相似文献

6
PET/CT-guided biopsy with respiratory motion correction.PET/CT 引导下的呼吸运动校正活检。
Int J Comput Assist Radiol Surg. 2019 Dec;14(12):2187-2198. doi: 10.1007/s11548-019-02047-4. Epub 2019 Sep 11.

引用本文的文献

7
Motion estimation for cardiac emission tomography by optical flow methods.基于光流法的心脏发射断层扫描运动估计
Phys Med Biol. 2008 Jun 7;53(11):2991-3006. doi: 10.1088/0031-9155/53/11/016. Epub 2008 May 12.

本文引用的文献

1
Least-squares fitting of two 3-d point sets.最小二乘拟合两个三维点集。
IEEE Trans Pattern Anal Mach Intell. 1987 May;9(5):698-700. doi: 10.1109/tpami.1987.4767965.
8
Practical aspects of a data-driven motion correction approach for brain SPECT.
IEEE Trans Med Imaging. 2003 Jun;22(6):722-9. doi: 10.1109/TMI.2003.814790.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验