Medintz Igor L, Mattoussi Hedi
US Naval Research Laboratory, Center for Bio/Molecular Science and Engineering, Code 6910, and Division of Optical Sciences, Code 5611, 4555 Overlook Ave, S.W. Washington DC, 20375, USA.
Phys Chem Chem Phys. 2009 Jan 7;11(1):17-45. doi: 10.1039/b813919a. Epub 2008 Nov 27.
We provide an overview of the progress made in the past few years in investigating fluorescence resonance energy transfer (FRET) using semiconductor quantum dots (QDs) and the application of QD-based FRET to probe specific biological processes. We start by providing some of the pertinent conceptual elements involved in resonance energy transfer, and then discuss why the Förster dipole-dipole mechanism applies to QD fluorophores. We then describe the unique QD photophysical properties of direct relevance to FRET and summarize the main advantages offered, along with some of the limitations encountered by QDs as exciton donors and/or acceptors. Next we describe the overall progress made and discuss a few representative examples where QD-based FRET sensing of specific biological processes has been demonstrated. We also detail some of the advances of single molecule FRET using QD-conjugates and highlight the unique information that can be extracted. We conclude by providing an assessment of where QD-based FRET investigations may be evolving in the near future.
我们概述了过去几年在利用半导体量子点(QD)研究荧光共振能量转移(FRET)方面取得的进展,以及基于QD的FRET在探测特定生物过程中的应用。我们首先介绍共振能量转移中涉及的一些相关概念元素,然后讨论福斯特偶极 - 偶极机制为何适用于QD荧光团。接着我们描述与FRET直接相关的QD独特光物理性质,总结其主要优势以及QD作为激子供体和/或受体所遇到的一些局限性。接下来我们描述取得的总体进展,并讨论一些已证明基于QD的FRET对特定生物过程进行传感的代表性实例。我们还详细介绍了使用QD共轭物进行单分子FRET的一些进展,并强调可以提取的独特信息。最后,我们对基于QD的FRET研究在不久的将来可能的发展方向进行评估。