Suppr超能文献

Bayesian clustering of flow cytometry data for the diagnosis of B-chronic lymphocytic leukemia.

作者信息

Lakoumentas John, Drakos John, Karakantza Marina, Nikiforidis George C, Sakellaropoulos George C

机构信息

Medical Physics Department, School of Medicine, University of Patras, GR-26504 Patras, Greece.

出版信息

J Biomed Inform. 2009 Apr;42(2):251-61. doi: 10.1016/j.jbi.2008.11.003. Epub 2008 Dec 6.

Abstract

In the rapidly advancing field of flow cytometry, methodologies facilitating automated clinical decision support are increasingly needed. In the case of B-chronic lymphocytic leukemia (B-CLL), discrimination of the various subpopulations of blood cells is an important task. In this work, our objective is to provide a useful paradigm of computer-based assistance in the domain of flow-cytometric data analysis by proposing a Bayesian methodology for flow cytometry clustering. Using Bayesian clustering, we replicate a series of (unsupervised) data clustering tasks, usually performed manually by the expert. The proposed methodology is able to incorporate the expert's knowledge, as prior information to data-driven statistical learning methods, in a simple and efficient way. We observe almost optimal clustering results, with respect to the expert's gold standard. The model is flexible enough to identify correctly non canonical clustering structures, despite the presence of various abnormalities and heterogeneities in data; it offers an advantage over other types of approaches that apply hierarchical or distance-based concepts.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验