Barton N H, de Vladar H P
Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, United Kingdom.
Genetics. 2009 Mar;181(3):997-1011. doi: 10.1534/genetics.108.099309. Epub 2008 Dec 15.
The evolution of quantitative characters depends on the frequencies of the alleles involved, yet these frequencies cannot usually be measured. Previous groups have proposed an approximation to the dynamics of quantitative traits, based on an analogy with statistical mechanics. We present a modified version of that approach, which makes the analogy more precise and applies quite generally to describe the evolution of allele frequencies. We calculate explicitly how the macroscopic quantities (i.e., quantities that depend on the quantitative trait) depend on evolutionary forces, in a way that is independent of the microscopic details. We first show that the stationary distribution of allele frequencies under drift, selection, and mutation maximizes a certain measure of entropy, subject to constraints on the expectation of observable quantities. We then approximate the dynamical changes in these expectations, assuming that the distribution of allele frequencies always maximizes entropy, conditional on the expected values. When applied to directional selection on an additive trait, this gives a very good approximation to the evolution of the trait mean and the genetic variance, when the number of mutations per generation is sufficiently high (4Nmicro > 1). We show how the method can be modified for small mutation rates (4Nmicro --> 0). We outline how this method describes epistatic interactions as, for example, with stabilizing selection.
数量性状的进化取决于所涉及等位基因的频率,但这些频率通常无法测量。先前的研究团队基于与统计力学的类比,提出了一种数量性状动态的近似方法。我们给出了该方法的一个改进版本,使这种类比更加精确,并且广泛适用于描述等位基因频率的进化。我们明确计算了宏观量(即依赖于数量性状的量)如何以一种独立于微观细节的方式依赖于进化力。我们首先表明,在漂变、选择和突变作用下,等位基因频率的平稳分布在可观测量的期望受到约束的条件下,使某种熵的度量最大化。然后,我们假设等位基因频率的分布在给定期望值的条件下始终使熵最大化,从而近似这些期望的动态变化。当应用于加性性状的定向选择时,当每代的突变数足够高(4Nμ > 1)时,这能很好地近似性状均值和遗传方差的进化。我们展示了如何针对小突变率(4Nμ → 0)对该方法进行修改。我们概述了该方法如何描述上位性相互作用,例如与稳定选择的相互作用。