Suppr超能文献

通过透明现实模拟可增强对麻醉机功能的理解。

Understanding of anesthesia machine function is enhanced with a transparent reality simulation.

作者信息

Fischler Ira S, Kaschub Cynthia E, Lizdas David E, Lampotang Samsun

机构信息

Department of Psychology, University of Florida, Gainesville, Florida 32611-2250, USA.

出版信息

Simul Healthc. 2008 Spring;3(1):26-32. doi: 10.1097/SIH.0b013e31816366d3.

Abstract

INTRODUCTION

Photorealistic simulations may provide efficient transfer of certain skills to the real system, but by being opaque may fail to encourage deeper learning of the structure and function of the system. Schematic simulations that are more abstract, with less visual fidelity but make system structure and function transparent, may enhance deeper learning and optimize retention and transfer of learning. We compared learning effectiveness of these 2 modes of externalizing the output of a common simulation engine (the Virtual Anesthesia Machine, VAM) that models machine function and dynamics and responds in real time to user interventions such as changes in gas flow or ventilation.

METHODS

Undergraduate students (n = 39) and medical students (n = 35) were given a single, 1-hour guided learning session with either a Transparent or an Opaque version of the VAM simulation. The following day, the learners' knowledge of machine components, function, and dynamics was tested.

RESULTS

The Transparent-VAM groups scored higher than the Opaque-VAM groups on a set of multiple-choice questions concerning conceptual knowledge about anesthesia machines (P = 0.009), provided better and more complete explanations of component function (P = 0.003), and were more accurate in remembering and inferring cause-and-effect dynamics of the machine and relations among components (P = 0.003). Although the medical students outperformed undergraduates on all measures, a similar pattern of benefits for the Transparent VAM was observed for these 2 groups.

CONCLUSIONS

Schematic simulations that transparently allow learners to visualize, and explore, underlying system dynamics and relations among components may provide a more effective mental model for certain systems. This may lead to a deeper understanding of how the system works, and therefore, we believe, how to detect and respond to potentially adverse situations.

摘要

引言

逼真的模拟可能会将某些技能有效地转移到实际系统中,但由于其不透明性,可能无法促进对系统结构和功能的深入学习。更抽象的示意性模拟,视觉保真度较低,但能使系统结构和功能透明化,可能会增强深入学习,并优化学习的保留和迁移。我们比较了这两种将通用模拟引擎(虚拟麻醉机,VAM)的输出进行外化的模式的学习效果,该模拟引擎对机器功能和动力学进行建模,并实时响应用户干预,如气流或通气的变化。

方法

本科生(n = 39)和医学生(n = 35)接受了一次为时1小时的VAM模拟的透明版或不透明版的引导学习课程。第二天,对学习者关于机器组件、功能和动力学的知识进行测试。

结果

在一组关于麻醉机概念知识的多项选择题上,透明VAM组的得分高于不透明VAM组(P = 0.009),对组件功能的解释更好、更完整(P = 0.003),并且在记忆和推断机器的因果动力学以及组件之间的关系方面更准确(P = 0.003)。虽然医学生在所有指标上的表现都优于本科生,但这两组在透明VAM方面都观察到了类似的受益模式。

结论

示意性模拟能够透明地让学习者可视化并探索潜在的系统动力学以及组件之间的关系,对于某些系统可能提供更有效的心智模型。这可能会导致对系统工作方式有更深入的理解,因此,我们认为,也能更深入理解如何检测和应对潜在的不利情况。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验