Aguilella-Arzo Marcel, Andrio Andreu, Aguilella Vicente M, Alcaraz Antonio
Departamento de Física, Universitat Jaume I, 12080 Castellón, Spain.
Phys Chem Chem Phys. 2009 Jan 14;11(2):358-65. doi: 10.1039/b812775a. Epub 2008 Oct 30.
Water molecules in confined geometries like nanopores and biological ion channels exhibit structural and dynamical properties very different from those found in free solution. Protein channels that open aqueous pores through biological membranes provide a complex spatial and electrostatic environment that decreases the translational and rotational mobility of water molecules, thus altering the effective dielectric constant of the pore water. By using the Booth equation, we study the effect of the large electric field created by ionizable residues of an hour-glass shaped channel, the bacterial porin OmpF, on the pore water dielectric constant, epsilon(w). We find a space-dependent significant reduction (down to 20) of epsilon(w) that may explain some ad hoc assumptions about the dielectric constant of the protein and the water pore made to reconcile model calculations with measurements of permeation properties and pK(a)'s of protein residues. The electric potential calculations based on the OmpF protein atomic structure and the Booth field-dependent dielectric constant show that protein dielectric constants ca. 10 yield good agreement with molecular dynamics simulations as well as permeation experiments.
处于纳米孔和生物离子通道等受限几何结构中的水分子,其结构和动力学性质与自由溶液中的水分子截然不同。贯穿生物膜形成水通道的蛋白质通道提供了一个复杂的空间和静电环境,这会降低水分子的平移和旋转流动性,从而改变孔内水的有效介电常数。通过使用布思方程,我们研究了沙漏形通道(细菌孔蛋白OmpF)中可电离残基产生的强电场对孔内水介电常数ε(w)的影响。我们发现ε(w)存在显著的空间依赖性降低(低至20),这或许可以解释一些为使模型计算与渗透特性及蛋白质残基pK(a)的测量结果相协调而对蛋白质和水孔介电常数所做的临时假设。基于OmpF蛋白质原子结构和布思场依赖介电常数的电势计算表明,蛋白质介电常数约为10时,与分子动力学模拟以及渗透实验结果吻合良好。