Kleppisch Thomas
Institut für Pharmakologie und Toxikologie, Technische Universität München, Biedersteiner Strasse 29, München, 80802, Germany.
Handb Exp Pharmacol. 2009(191):71-92. doi: 10.1007/978-3-540-68964-5_5.
Phosphodiesterases (PDEs) represent important cornerstones of cGMP signaling in various tissues. Since the discovery of PDE activity in 1962, it has become clear that the functional characteristics of PDEs and their role in cyclic nucleotide signaling are fairly complex. On the one hand, members of the PDE family responsible for the hydrolysis of cGMP affect cellular responses by shaping cGMP signals derived from the activation of soluble cytosolic and/or membrane bound particulate guanylyl cyclases. Conversely, PDEs may function as downstream effectors in the cGMP signaling cascade. To make things even more sophisticated, cGMP modulates the activity of several PDEs either directly, by binding to a regulatory domain, or indirectly, through phosphorylation, and the result can be either inhibition or stimulation of the enzyme, depending on the subtype. Furthermore, cross-talk between cGMP and cAMP signaling is achieved by cGMP-dependent modulation of PDEs hydrolyzing cAMP and vice versa. Mammals possess at least 21 PDE genes and often express a set of PDEs in a tissue- and differentiation-dependent manner. Given these premises, it is still a challenging task to elucidate the physiological function(s) of individual PDE genes. The present chapter focuses on the role of PDEs as regulators of neuronal functions. Useful information regarding this topic has been gained by studying (1) the expression pattern of PDEs in the CNS, (2) the association of PDEs with specific macromolecular signaling complexes and (3) the phenotypes associated with mutations or ablation of PDE genes in man, mice and fruit flies, respectively. PDEs degrading cGMP and/or being regulated by cGMP have been implicated in cognition and learning, Parkinson's disease, attention deficit hyperactivity disorder, psychosis and depression. Correspondingly, modulators of PDEs have become attractive tools for treatment of these disorders of CNS function.
磷酸二酯酶(PDEs)是各种组织中cGMP信号传导的重要基石。自1962年发现PDE活性以来,很明显PDEs的功能特性及其在环核苷酸信号传导中的作用相当复杂。一方面,负责水解cGMP的PDE家族成员通过塑造源自可溶性胞质和/或膜结合颗粒鸟苷酸环化酶激活的cGMP信号来影响细胞反应。相反,PDEs可能在cGMP信号级联反应中作为下游效应器发挥作用。更复杂的是,cGMP可通过与调节域结合直接或通过磷酸化间接调节几种PDEs的活性,根据亚型不同,结果可能是酶的抑制或刺激。此外,cGMP和cAMP信号之间的相互作用是通过cGMP对水解cAMP的PDEs的依赖性调节实现的,反之亦然。哺乳动物至少拥有21个PDE基因,并且通常以组织和分化依赖性方式表达一组PDEs。鉴于这些前提,阐明单个PDE基因的生理功能仍然是一项具有挑战性的任务。本章重点关注PDEs作为神经元功能调节剂的作用。通过研究(1)PDEs在中枢神经系统中的表达模式,(2)PDEs与特定大分子信号复合物的关联,以及(3)分别在人、小鼠和果蝇中与PDE基因的突变或缺失相关的表型,已经获得了关于该主题的有用信息。降解cGMP和/或受cGMP调节的PDEs与认知和学习、帕金森病、注意力缺陷多动障碍、精神病和抑郁症有关。相应地,PDEs调节剂已成为治疗这些中枢神经系统功能障碍的有吸引力的工具。